期刊文献+
共找到930篇文章
< 1 2 47 >
每页显示 20 50 100
Solution‑Processed Thin Film Transparent Photovoltaics:Present Challenges and Future Development
1
作者 Tianle Liu Munerah M.S.Almutairi +5 位作者 Jie Ma Aisling Stewart Zhaohui Xing Mengxia Liu Bo Hou Yuljae Cho 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期566-600,共35页
Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shif... Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out. 展开更多
关键词 Transparent semiconductors Solution-processable transparent solar cell Emerging solar cell materials Buildingintegrated photovoltaics
在线阅读 下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
2
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure Design strategies
在线阅读 下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
3
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
在线阅读 下载PDF
An Unprecedented Efficiency with Approaching 21%Enabled by Additive‑Assisted Layer‑by‑Layer Processing in Organic Solar Cells
4
作者 Shuai Xu Youdi Zhang +6 位作者 Yanna Sun Pei Cheng Zhaoyang Yao Ning Li Long Ye Lijian Zuo Ke Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期372-375,共4页
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act... Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs. 展开更多
关键词 Organic solar cells Additive-assisted layer-by-layer processing Three-dimensional fibril morphology Bulk p-i-n structure Optical management
在线阅读 下载PDF
Ultra‑Transparent and Multifunctional IZVO Mesh Electrodes for Next‑Generation Flexible Optoelectronics
5
作者 Kiran A.Nirmal Tukaram D.Dongale +3 位作者 Atul C.Khot Chenjie Yao Nahyun Kim Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期293-309,共17页
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a... Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics. 展开更多
关键词 Self-cracking template Vanadium-doped indium zinc oxide mesh Organic solar cells Organic light-emitting diodes Flexible transparent memory
在线阅读 下载PDF
Advances in the Fabrication of Perovskite Solar Cells by Roll-to-Roll Technology
6
作者 ZHAO Jiawei CHEN Haolin +1 位作者 LUO Ni LIU Zhenguo 《材料导报》 北大核心 2025年第1期98-114,共17页
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu... In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field. 展开更多
关键词 perovskite solar cells roll-to-roll technology substrate scalable deposition technology performance optimization
在线阅读 下载PDF
Technical and economic feasibility assessment for hybrid energy system electricity and hydrogen generation: A case study
7
作者 Paul C.Okonkwo Samuel Chukwujindu Nwokolo +7 位作者 El Manaa Barhoumi Ibrahim B.Mansir Usman Habu Taura Barun Kumar Das Ahmed Bahgat Radwan Wilfred Emori Ephraim Bonah Agyekum Khalid Al Kaaf 《Global Energy Interconnection》 2025年第1期62-81,共20页
Hydrogen is emerging as a promising alternative to fossil fuels in the transportation sector.This study evaluated the feasibility of estab-lishing hydrogen refueling stations in five cities in Oman,Duqm,Haima,Sur,Al B... Hydrogen is emerging as a promising alternative to fossil fuels in the transportation sector.This study evaluated the feasibility of estab-lishing hydrogen refueling stations in five cities in Oman,Duqm,Haima,Sur,Al Buraymi,and Salalah,using Hybrid Optimization of Multiple Electric Renewables(HOMER)software.Three hybrid energy systems,photovoltaic-wind turbine-battery,photovoltaic-battery,and wind turbine-battery were analyzed for each city.Results indicated that Duqm offers the lowest net present cost(NPC),levelized cost of energy,and levelized cost of hydrogen,making it the most cost-effective location.Additionally,Sensitivity analysis showed that as the life of electrolyzer increases during operation,the initial capital expenditure is distributed over a longer operational period,leading to a reduction in the NPC.More so,renewable energy systems produced no emissions which supports Oman’s mission target.This comprehensive analysis confirms the feasibility of establishing a hydrogen refueling station in Duqm,Oman,and highlights advanced optimization techniques’superior capability in designing cost-effective,sustainable energy systems. 展开更多
关键词 CITIES Economic indicator Hydrogen production Optimization SOLAR
在线阅读 下载PDF
Magnetron sputtered nickel oxide with suppressed interfacial defect states for efficient inverted perovskite solar cells
8
作者 Guoqiang Ma Qin Tan +8 位作者 Zhaoning Li Jingwei Xiu Jiafeng Wang Tianle Cheng Dong He Qiang Sun Xuhang Ma Francesco Lamberti Zhubing He 《Journal of Energy Chemistry》 2025年第1期348-355,共8页
Widely used spin-coated nickle oxide (NiOx) based perovskite solar cells often suffer from severe interfacial reactions between the NiOxand adjacent perovskite layers due to surface defect states,which inherently impa... Widely used spin-coated nickle oxide (NiOx) based perovskite solar cells often suffer from severe interfacial reactions between the NiOxand adjacent perovskite layers due to surface defect states,which inherently impair device performance in a long-term view,even with surface molecule passivation.In this study,we developed high-quality magnetron-sputtered NiOxthin films through detailed process optimization,and compared systematically sputtered and spin-coated NiOxthin film surfaces from materials to devices.These sputtered NiOxfilms exhibit improved crystallinity,smoother surfaces,and significantly reduced Ni3+or Ni vacancies compared to their spin-coated counterparts.Consequently,the interface between the perovskite and sputtered NiOxfilm shows a substantially reduced density of defect states.Perovskite solar cells (PSCs) fabricated with our optimally sputtered NiOxfilms achieved a high power conversion efficiency (PCE) of up to 19.93%and demonstrated enhanced stability,maintaining 86.2% efficiency during 500 h of maximum power point tracking under one standard sun illumination.Moreover,with the surface modification using (4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)p hosphonic acid (DMAcPA),the device PCE was further promoted to 23.07%,which is the highest value reported for sputtered NiOxbased PSCs so far. 展开更多
关键词 Nickle oxide Magnetron sputter DEFECT Stability Perovskite solar cell
在线阅读 下载PDF
Co-production of hydrogen, oxygen, and electricity via an integrated solar-driven system with decoupled water electrolyzer and Na-Zn ion battery
9
作者 Fei Lv Longjie Liu +4 位作者 Jiazhe Wu Pengfei Wang Lixia Pan Dengwei Jing Yubin Chen 《Journal of Energy Chemistry》 2025年第1期621-627,共7页
Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems ... Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems is still in its infancy.Herein,an integrated hydrogen-oxygen (O_(2))-electricity co-production system featuring a bipolar membrane-assisted decoupled electrolyzer and a Na-Zn ion battery was established with sodium nickelhexacyanoferrate (NaNiHCF) and Zn^(2+)/Zn as dual redox electrodes.The decoupled electrolyzer enables to produce H_(2)and O_(2)in different time and space with almost 100%Faradaic efficiency at 100 mA cm^(-2).Then,the charged NaNiHCF and Zn electrodes after the electrolysis processes formed a Na-Zn ion battery,which can generate electricity with an average cell voltage of 1.75 V at 10 m A cm^(-2).By connecting Si photovoltaics with the modular electrochemical device,a well-matched solar driven system was built to convert the intermittent solar energy into hydrogen and electric energy with a solar to hydrogen-electricity efficiency of 16.7%,demonstrating the flexible storage and conversion of renewables. 展开更多
关键词 HYDROGEN ELECTRICITY Decoupled water electrolyzer Na-Zn ion battery Solar energy
在线阅读 下载PDF
Regulating crystallization and retarding oxidation in Sn-Pb perovskite via 1D cation engineering for high performance all-perovskite tandem solar cells
10
作者 Ranran Liu Xin Zheng +10 位作者 Zaiwei Wang Miaomiao Zeng Chunxiang Lan Shaomin Yang Shangzhi Li Awen Wang Min Li Jing Guo Xuefei Weng Yaoguang Rong Xiong Li 《Journal of Energy Chemistry》 2025年第1期646-652,共7页
All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2... All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses.However,the challenges encompass the oxidation of Sn^(2+)to Sn^(4+)and uncontrolled crystallization kinetics in Sn-Pb perovskites,leading to nonradiative recombination and compositional heterogeneity to decrease photovoltaic efficiency and operational stability.Herein,we introduced an ionic liquid additive,1-ethyl-3-methylimidazolium iodide (EMIMI) into Sn-Pb perovskite precursor to form low-dimensional Sn-rich/pure-Sn perovskites at grain boundaries,which mitigates oxidation of Sn^(2+)to Sn^(4+)and regulates the film-forming dynamics of Sn/Pb-based perovskite films.The optimized single-junction Sn-Pb perovskite devices incorporating EMIMI achieved a high efficiency of 22.87%.Furthermore,combined with wide-bandgap perovskite sub-cells in tandem device,we demonstrate 2-terminal all-perovskite tandem solar cells with a power conversion efficiency of 28.34%,achieving improved operational stability. 展开更多
关键词 All-perovskite tandem solar cells Sn-Pb perovskite 1D Regulated crystallization ANTIOXIDATION
在线阅读 下载PDF
Innovative dual-mode device integrating capacitive desalination and solar vapor generation for high-efficiency seawater desalination
11
作者 Jiacheng Wang Zhaoyu Chen +6 位作者 Ruduan Yuan Jiaxin Luo Ben Zhang Keju Ji Meng Li Juanxiu Xiao Kuan Sun 《Journal of Energy Chemistry》 2025年第1期171-179,共9页
Solar-driven interface evaporation with high solar-to-steam conversion efficiency has shown great potential in seawater desalination.However,due to the influence of latent heat and condensation efficiency,the water yi... Solar-driven interface evaporation with high solar-to-steam conversion efficiency has shown great potential in seawater desalination.However,due to the influence of latent heat and condensation efficiency,the water yield from solar-driven interface evaporation remains insufficient,posing a significant challenge that requires resolution.In this work,we designed a dual-mode high-flux seawater desalination device that combines solar-driven interface evaporation and capacitive desalination.By utilizing coupled desalination materials exhibiting both photothermal conversion and capacitance activity,the device demonstrated photothermal evaporation rates of 1.41 and 0.97 kg m^(-2)h^(-1)for condensate water yield under one-sun irradiation.Additionally,the device exhibited a salt adsorption capacity of up to48 mg g^(-1)and a salt adsorption rate of 2.1 mg g^(-1)min-1.In addition,the salt adsorption capacity increased by approximately 32%under one-sun irradiation.Furthermore,photo-enhanced capacitive desalination performance was explored through numerical simulations and theoretical calculations.Theoretical calculations and characterizations confirmed that the defect energy levels formed by the introduction of sulfur vacancies can effectively widen the light absorption range,improve photothermal conversion performance,and stimulate more photoelectrons to participate in capacitive desalination.Concurrently,the electron distribution state of molybdenum disulfide with sulfur vacancies and surface defect sites contributes to ion/electron transport at the solid-liquid interface.This work provides a novel pathway for integrating solar vapor generation with other low-energy desalination technologies. 展开更多
关键词 Capacitive deionization Solar vapor generation Molybdenum disulfide Defect engineering
在线阅读 下载PDF
Flexible molecules dedicate to release strain of inverted inorganic perovskite solar cell
12
作者 Hongrui Sun Sanlong Wang +5 位作者 Pengyang Wang Yali Liu Shanshan Qi Biao Shi Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 2025年第1期87-93,共7页
The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the... The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices. 展开更多
关键词 Inverted inorganic perovskite solar cells Flexible molecules Strain release Crystallization Energy barrier High PCE
在线阅读 下载PDF
Micro-strain regulation strategy to stabilize perovskite lattice based on the categories and impact of strain on perovskite solar cells
13
作者 Caixia Li Wenwu Liu +2 位作者 Shiji Da Lingbin Kong Fen Ran 《Journal of Energy Chemistry》 2025年第1期578-604,共27页
Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conv... Photovoltaic metal halide perovskite solar cells(PSCs) convert light to electricity more efficiently than crystalline silicon cells, and the cost of materials used to make them is lower than that of silicon cells.Conversion efficiency is not a core issue affecting the application of perovskite solar cells in special scenarios.At present, stability is the major technical encounters that hinders its further commercial development. Microstrain in PSCs is currently a significant factor responsible for the device's instability. Strain-induced ion migration is widely believed to accelerate perovskite degradation even when external stimuli are excluded.Undoubtedly, it is imperative to study strain to enhance the stability of PSCs. This paper reviews recent developments to understand strain's origin and effect mechanisms on performance of PSCs, including ion migration,failure behavior, defect formation, and its effect on photoelectric properties, stability, and reliability.Additionally, several well-known strain management strategies are systematically introduced based on the strain effect mechanism and strain engineering on the film, providing more clues for further preparation with increased stability. The manipulation of external physical strain applied from films to entire devices has been extensively studied. Furthermore, recommendations for future research directions and chemical approaches have been provided. It is emphasized that strain engineering plays a crucial role in improving the efficiency and longevity of PSCs. Tensile strain causes rapid degradation, while moderate compressive strain and external strain control could improve properties and stability. Efforts should focus on controlling compressive strain to mitigate residual tensile strain and introducing it in a controlled manner. Future research endeavors may focus on exploring these pathways to improve the efficiency and lifespan of PSCs. 展开更多
关键词 Halide perovskite solar cells Strain origins Strain effects Strain management
在线阅读 下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:4
14
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
在线阅读 下载PDF
Biomass-enhanced Janus sponge-like hydrogel with salt resistance and highstrength for efficient solar desalination 被引量:2
15
作者 Aqiang Chu Meng Yang +4 位作者 Juanli Chen Jinmin Zhao Jing Fang Zhensheng Yang Hao Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1698-1710,共13页
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ... Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications. 展开更多
关键词 Solar interfacial evaporation HYDROGEL Biomass DESALINATION Salt resistance
在线阅读 下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
16
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
在线阅读 下载PDF
Leakage Proof,Flame-Retardant,and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting 被引量:2
17
作者 Yuhui Chen Yang Meng +7 位作者 Jiangyu Zhang Yuhui Xie Hua Guo Mukun He Xuetao Shi Yi Mei Xinxin Sheng Delong Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期99-120,共22页
Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low th... Phase change materials(PCMs)offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization.However,for organic solid-liquid PCMs,issues such as leakage,low thermal conductivity,lack of efficient solar-thermal media,and flamma-bility have constrained their broad applications.Herein,we present an innova-tive class of versatile composite phase change materials(CPCMs)developed through a facile and environmentally friendly synthesis approach,leveraging the inherent anisotropy and unidirectional porosity of wood aerogel(nanowood)to support polyethylene glycol(PEG).The wood modification process involves the incorporation of phytic acid(PA)and MXene hybrid structure through an evaporation-induced assembly method,which could impart non-leaking PEG filling while concurrently facilitating thermal conduction,light absorption,and flame-retardant.Consequently,the as-prepared wood-based CPCMs showcase enhanced thermal conductivity(0.82 W m^(-1)K^(-1),about 4.6 times than PEG)as well as high latent heat of 135.5 kJ kg^(-1)(91.5%encapsula-tion)with thermal durability and stability throughout at least 200 heating and cooling cycles,featuring dramatic solar-thermal conversion efficiency up to 98.58%.In addition,with the synergistic effect of phytic acid and MXene,the flame-retardant performance of the CPCMs has been significantly enhanced,showing a self-extinguishing behavior.Moreover,the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs,relieving contemporary health hazards associated with electromagnetic waves.Overall,we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs,showcasing the operational principle through a proof-of-concept prototype system. 展开更多
关键词 Wood PCMs MXene Solar thermal storage and conversion FLAME-RETARDANT Electromagnetic shielding
在线阅读 下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
18
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
在线阅读 下载PDF
H-and J-aggregation of conjugated small molecules in organic solar cells 被引量:1
19
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION Organic solar cells Small molecules EFFICIENCY STABILITY
在线阅读 下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells 被引量:1
20
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide RESIDUE REGULATION Perovskite solar cells Efficiency Stability
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部