Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Solar evaporation attracted lots of attention due to its environment-friendly and high efficiency,which is a potential approach to collecting fresh water.Many efforts have been made to improve the evaporation rate in ...Solar evaporation attracted lots of attention due to its environment-friendly and high efficiency,which is a potential approach to collecting fresh water.Many efforts have been made to improve the evaporation rate in the open space.While the actual water collection rate is far less than the evaporation rate,especially in passive water collection,limiting its practical and scalable applications.In this review,we focus on freshwater collection based on solar evaporation.Firstly,heat and mass transfer behaviors on the evaporation side were summarized to improve evaporation performance,including heat transfer processes in thermal radiation,convection,and conduction;mass transfer processes in water supply,evaporation enthalpy,and salt rejection.Sequentially,subcooling,wettability,and geometry of the condensation side were discussed to improve water collection performance,which should be designed collaboratively with the evaporation side in a confined space.Finally,thermal recovery and electricity generation beyond water collection were also introduced,and some challenges still need to improve in the further for scalable and practical applications,including passive water collection rate,integrated system,and long-term issues.展开更多
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable...Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.展开更多
Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of...Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of its high efficiency and low capital cost compared to traditional solar distillation systems.Nevertheless,previous solar evaporation systems usually required highly concentrated solar irradiation and high capital cost,limiting the practical application on a large scale.Herein,for the first time in this work,polydopamine(PDA)-capped nano Fe_(3)O_(4)(Fe_(3)O_(4)@PDA)nanofluids were used as solar absorbers in a volumetric system for solar evaporation.The introduction of organic PDA to nano Fe_(3)O_(4)highly contributed to the high light-absorbing capacity of over 85%in wide ranges of 200–2400 nm because of the existence of numerous carbon bonds and pi(π)bonds in PDA.As a result,high evaporation efficiency of 69.93%under low irradiation of 1.0 kW m^(-2)was achieved.Compared to other nanofluids,Fe_(3)O_(4)@PDA nanofluids also provided an advantage in high unit evaporation rates.Moreover,Fe_(3)O_(4)@PDA nanofluids showed excellent reusability and recyclability owing to the preassembled nano Fe_(3)O_(4),which significantly reduced the material consumptions.These results demonstrated that the Fe_(3)O_(4)@PDA nanofluids held great promising application in highly efficient solar evaporation.展开更多
Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a s...Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants.展开更多
Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) sol...Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim...Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.展开更多
Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catal...Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.展开更多
The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actu...The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actual,oil-contaminated seawater remains a critical challenge,because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks,resulting in undermined evaporation rate and conversion efficiency.Herein,we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable,highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination.The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios,whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures.The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent,isotropic wall apertures together with underwater superhydrophobicity,while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous,large-area evaporation channels.The modularized solar evaporator delivers the best evaporation rate(1.48 kg m-2h-1)and conversion efficiency(92.08%)among all MXene-based desalination materials on oil-contaminated seawater.展开更多
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金financially supported by the Central South University Innovation-Driven Research Programme(2023CXQD012).
文摘Solar evaporation attracted lots of attention due to its environment-friendly and high efficiency,which is a potential approach to collecting fresh water.Many efforts have been made to improve the evaporation rate in the open space.While the actual water collection rate is far less than the evaporation rate,especially in passive water collection,limiting its practical and scalable applications.In this review,we focus on freshwater collection based on solar evaporation.Firstly,heat and mass transfer behaviors on the evaporation side were summarized to improve evaporation performance,including heat transfer processes in thermal radiation,convection,and conduction;mass transfer processes in water supply,evaporation enthalpy,and salt rejection.Sequentially,subcooling,wettability,and geometry of the condensation side were discussed to improve water collection performance,which should be designed collaboratively with the evaporation side in a confined space.Finally,thermal recovery and electricity generation beyond water collection were also introduced,and some challenges still need to improve in the further for scalable and practical applications,including passive water collection rate,integrated system,and long-term issues.
基金supported by the National Natural Science Foundation of China(No.52070162)the National Key Research and Development Program of China(2018YFA0901300).
文摘Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.
基金financial support from the National Natural Science Foundation of China(No.51704220,No.51974216 and No.51674183)for this work
文摘Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids(nanofluids)as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of its high efficiency and low capital cost compared to traditional solar distillation systems.Nevertheless,previous solar evaporation systems usually required highly concentrated solar irradiation and high capital cost,limiting the practical application on a large scale.Herein,for the first time in this work,polydopamine(PDA)-capped nano Fe_(3)O_(4)(Fe_(3)O_(4)@PDA)nanofluids were used as solar absorbers in a volumetric system for solar evaporation.The introduction of organic PDA to nano Fe_(3)O_(4)highly contributed to the high light-absorbing capacity of over 85%in wide ranges of 200–2400 nm because of the existence of numerous carbon bonds and pi(π)bonds in PDA.As a result,high evaporation efficiency of 69.93%under low irradiation of 1.0 kW m^(-2)was achieved.Compared to other nanofluids,Fe_(3)O_(4)@PDA nanofluids also provided an advantage in high unit evaporation rates.Moreover,Fe_(3)O_(4)@PDA nanofluids showed excellent reusability and recyclability owing to the preassembled nano Fe_(3)O_(4),which significantly reduced the material consumptions.These results demonstrated that the Fe_(3)O_(4)@PDA nanofluids held great promising application in highly efficient solar evaporation.
基金H.Xu acknowledges the financial support from the Australian Research Council(FT190100485,DP220100583)P.W.acknowledge financial support from the China Scholarship Council for primary scholarships and from the Future Industries Institute for top up scholarships.All authors acknowledge the use of Microscopy Australia facilities located at the University of South Australia,infrastructure co-funded by the University of South Australia,the South Australian State Government,and the Australian Federal Government's National Collaborative Research Infrastructure Strategy(NCRIS)scheme.
文摘Interfacial solar water evaporation is a reliable way to accelerate water evaporation and contaminant remediation.Embracing the recent advance in photothermal technology,a functional sponge was prepared by coating a sodium alginate(SA)impregnated sponge with a surface layer of reduced graphene oxide(rGO)to act as a photothermal conversion medium and then subsequently evaluated for its ability to enhance Pb extraction from contaminated soil driven by interfacial solar evaporation.The SA loaded sponge had a Pb adsorption capacity of 107.4 mg g^(-1).Coating the top surface of the SA sponge with rGO increased water evaporation performance to 1.81 kg m^(-2)h^(-1)in soil media under one sun illumination and with a wind velocity of 2 m s^(-1).Over 12 continuous days of indoor evaporation testing,the Pb extraction efficiency was increased by 22.0%under 1 sun illumination relative to that observed without illumination.Subsequently,Pb extraction was further improved by 48.9%under outdoor evaporation conditions compared to indoor conditions.Overall,this initial work shows the significant potential of interfacial solar evaporation technologies for Pb contaminated soil remediation,which should also be applicable to a variety of other environmental contaminants.
基金the financial support from the National Natural Science Foundation of China (Grant No. 52172038, 22179017)National Key Research and Development Program of China (Nos. 2022YFB4101600, 2022YFB4101601)。
文摘Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金support provided by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)the Research Grants Council of Hong Kong(Project No:AoE/M-402/20.)+1 种基金the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050248)the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.52272153,52032004)the KLOMT Key Laboratory Open Project(2022KLOMT02-05)。
文摘Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.
基金support from the National Natural Science Foundation of China(G.Nos.52173055,21961132024,and 51925302)the Ministry of Science and Technology of China(G.No.2021YFE0105100)+3 种基金the Textile Vision Basic Research Program(No.J202201)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(G.No.21130750100)the Fundamental Research Funds for the Central Universitiesthe DHU Distinguished Young Professor Program(G.No.LZA2020001)。
文摘The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actual,oil-contaminated seawater remains a critical challenge,because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks,resulting in undermined evaporation rate and conversion efficiency.Herein,we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable,highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination.The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios,whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures.The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent,isotropic wall apertures together with underwater superhydrophobicity,while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous,large-area evaporation channels.The modularized solar evaporator delivers the best evaporation rate(1.48 kg m-2h-1)and conversion efficiency(92.08%)among all MXene-based desalination materials on oil-contaminated seawater.