In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu...In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.展开更多
Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite end...Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite endows it with abundant catalytically active sites,thereby accelerating the reduction of I_(3)^(-).More importantly,the dye-sensitized solar cells(DSSCs)prepared by scraping it on flexible titanium mesh with low resistance had low series resistance(Rs).Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency(PCE)of ca.9.51%(surpassing the ca.8.15%efficiency of the Pt counter electrode),open-circuit voltage(Voc)of ca.0.79 V,short-circuit current density(Jsc)of ca.18.31 mA·cm^(-2),and fill factor(FF)of ca.0.65.Moreover,after 100 times of cyclic voltammetry(CV)test,the CV curve remained unchanged,indicating the excellent stability of FMS/CC in the electrolyte containing I_(3)^(-)/I^(-).展开更多
Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed v...Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed via precise control over the crystallization with co-anti-solvents in wide-bandgap perovskite(FA_(0.8) Cs_(0.2) Pb(I_(0.6) Br_(0.4))_(3),energy gap:1.77 eV)film.High-quality perovskite films can be achieved by employing a sophisticated co-anti-solvent technique,which effectively enhances the perovskite crystallinity with large grain size and suppresses the nonradiative recombination with pinhole-free surfaces.The results demonstrate that co-anti-solvents with a low boiling point polarity and nonpolar solvent contribute to superior performance of devices.The wide bandgap semi-transparent perovskite solar cell(ST-PSC)fabricated using co-anti-solvent exhibited a remarkable efficiency of 14.52%,and we successfully obtained an efficiency of 22.5%for 4 T perovskite-organic TSC.These findings inspire bright futures that TSCs could facilitate the development of more effective and sustainable solar energy solutions.展开更多
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis...Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.展开更多
The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance.In this work,a new polymer acceptor PY9-T based on heptacyclic benzotriazole(Y9-C16)as a buildi...The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance.In this work,a new polymer acceptor PY9-T based on heptacyclic benzotriazole(Y9-C16)as a building block and thiophene unit as the linking unit was synthesized,which exhibited a low bandgap(1.37 eV)and a high extinction coefficient of the neat film(1.44×10^(5) cm^(−1)).When PY9-T was blended with the wide bandgap polymer donor PBDB-T,the all-polymer solar cells(APSCs)showed a high power conversion efficiency(PCE)of 10.45%with both high open circuit voltage of 0.881 V and short-circuit current density of 19.82 mA/cm^(2).In addition,APSCs based on PY9-T show good thermal stability,as evidenced by slight changes morphologies when annealed at 100℃.These results suggest that Y9-C16 provides a new building block to develop efficient and stable polymer acceptors.展开更多
A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hype...A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2.展开更多
Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline T...Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8%to 26.7%.However,the unsatisfactory stability is still a major hurdl...Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8%to 26.7%.However,the unsatisfactory stability is still a major hurdle to the future commercialization of PSCs.Among various causes of instability,oxygen and photo-induced instability are indispensable aspects to be considered,especially there is a growing demand of manufacturing PSCs with low-cost environmental conditions.This review aims to provide a timely and comprehensive summary of the investigations related to the oxygen-and photo-induced decay(OP-decay)in perovskites.Key factors affecting the OP decay pathways and decay rate have been discussed.Techniques for the analysis of oxygen and photo-induced decay processes are included.Strategies for improving photo-oxygen stability have been summarized,from the aspects of suppressing the generation yield of superoxide,protecting perovskites from the generated superoxide,and slowing down the oxygen penetration,respectively.展开更多
Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing ...Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.展开更多
The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricatin...The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.展开更多
Limited charge carrier lifetime(τ)leads to the short charge carrier diffusion length(L_(D))and thus impedes the improvement of power conversion efficiencies(PCEs)of organic solar cells(OSCs).Herein,anthracene(AN)as t...Limited charge carrier lifetime(τ)leads to the short charge carrier diffusion length(L_(D))and thus impedes the improvement of power conversion efficiencies(PCEs)of organic solar cells(OSCs).Herein,anthracene(AN)as the additive is introduced into classical donor:acceptor pairs to increase theτ.Introducing AN efficiently enhances the crystallinity of the PM 6:BTP-eC 9+blend film to reduce the trap density and increase theτto 1.484μs,achieving the prolonged L_(D).The prolonged L_(D) enables the PM 6:BTP-eC 9+blend film to gain weaker charge carrier recombination,reduced leakage current,and shorter charge carrier extraction time in devices,compared with PM 6:BTP-eC 9 counterparts.Therefore,PM 6:BTP-eC 9+based OSCs achieve higher PCEs of 18.41%±0.16%than PM 6:BTP-eC 9 based ones(17.08%±0.11%).Moreover,the PM 6:L 8-BO+based OSC presents an impressive PCE of 19.14%.It demonstrates that introducing AN is an efficient method to increase theτfor prolonged L_(D),boosting PCEs of OSCs.展开更多
Two polymer donor materials,namely pBDT-BTI-EH and pBDT-BTI-ME,were synthesized by copoly-merizing benzodithiophene(BDT)unit with bithiophene imide(BTI)unit containing 2-ethylhexyl and methyl alkyl side chains,respect...Two polymer donor materials,namely pBDT-BTI-EH and pBDT-BTI-ME,were synthesized by copoly-merizing benzodithiophene(BDT)unit with bithiophene imide(BTI)unit containing 2-ethylhexyl and methyl alkyl side chains,respectively.Compared to pBDT-BTI-EH∶Y6 based organic solar cells(OSCs),the pBDT-BTI-ME∶Y6-based device exhibited higher charge mobilities,reduced charge recombination,more efficient exciton dissociation,and favorable film morphology,which leaded to increased short current density(Jsc),fill factor(FF)and thus a significant improvement in power conversion efficiency(PCE)from 9.31%to 15.69%.展开更多
Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes...Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes and electron transportation.The dyad bearing branched alkyl chains with the branching sites close to the imide positions forms homogeneously amorphous state,while with branching sites being away from the imide positions the PBI core tend to stack with multiple modes.There are fewer energy trapping sites in the homogeneously amorphous state,but in the multiple stacking system the strongπ-πinteractions give more trapping sites.Our study demonstrates that the aggregation state of PBI-based acceptors plays an important role in the performances of organic solar cells(OSCs).Multiple stacking needs to be diminished to avoid the constrained exciton dissociation and retarded charge transport in the active layer.展开更多
Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences...Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the pr...Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.展开更多
MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent...MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed.展开更多
In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed a...In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed according to the operational principle of the electrical power system. This paper takes the solar battery array as an instance to introduce the designing principle of its hardware circuits, and presents the methods to design the interface and the software program of the single-chip microprocessor system. The software scheme of the upper computer is introduced at the end of this paper. It has been proved that this simulated system could effectively achieve the complete functions coupled with the simple design by using of various mature techniques in the fields of electronic circuits, single-chip microprocessor and numerical emulation.展开更多
Four fused-benzotriazole based p-type polymers(BDT-TT,BDT-Se,BDD-TT,and BDD-Se)were designed and synthesized,and the fine-tuning on absorption band-widths and bandgaps via the backbone seleno-phene and thiophene strat...Four fused-benzotriazole based p-type polymers(BDT-TT,BDT-Se,BDD-TT,and BDD-Se)were designed and synthesized,and the fine-tuning on absorption band-widths and bandgaps via the backbone seleno-phene and thiophene strategies were reported.First,we introduced dithienothiophen[3,2-b]pyrrolobenzotriazole to co-polymerize with BDT-2F and synthesized BDT-TT.Then,we used selenophene to replace the thienothiophene units on the dithienothiophen[3,2-b]pyrrolobenzotriazole and synthesized BDT-Se.Compared to BDT-TT,BDT-Se showed a reduced bandgap from 2.0 eV to 1.89 eV.After that,we used BDD to replace BDT-2F and synthesized BDD-TT by co-polymerizing with dithienothiophen[3,2-b]pyrrolobenzotriazole.In comparison to BDT-TT,BDD-TT showed extended absorption band-width with the full-width-at-the-half-maximum(FWHM)increased from 138 nm to 229 nm and reduced bandgap from 2.0 eV to 1.71 eV.At last,we combined BDD and diselenophen[3,2-b]pyrrolo-benzotriazole and synthesized BDD-Se,which achieved extended absorption and further reduced bandgap(1.61 eV).Using PC71BM as the electron acceptor material,the organic solar cells fabricated by the four polymers gave the efficiencies of 1%-2%.展开更多
文摘In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.
文摘Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite endows it with abundant catalytically active sites,thereby accelerating the reduction of I_(3)^(-).More importantly,the dye-sensitized solar cells(DSSCs)prepared by scraping it on flexible titanium mesh with low resistance had low series resistance(Rs).Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency(PCE)of ca.9.51%(surpassing the ca.8.15%efficiency of the Pt counter electrode),open-circuit voltage(Voc)of ca.0.79 V,short-circuit current density(Jsc)of ca.18.31 mA·cm^(-2),and fill factor(FF)of ca.0.65.Moreover,after 100 times of cyclic voltammetry(CV)test,the CV curve remained unchanged,indicating the excellent stability of FMS/CC in the electrolyte containing I_(3)^(-)/I^(-).
基金Projects(U23A20138,52173192,52203250)supported by the National Natural Science Foundation of ChinaProject(2022YFB3803300)supported by the National Key Research and Development Program of ChinaProject supported by the State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘Constructing tandem solar cells(TSCs)is a strategy to enhance the power conversion efficiency(PCE)of single-junction photovoltaic technologies.Herein,efficient four-terminal(4 T)perovskite-organic TSCs are developed via precise control over the crystallization with co-anti-solvents in wide-bandgap perovskite(FA_(0.8) Cs_(0.2) Pb(I_(0.6) Br_(0.4))_(3),energy gap:1.77 eV)film.High-quality perovskite films can be achieved by employing a sophisticated co-anti-solvent technique,which effectively enhances the perovskite crystallinity with large grain size and suppresses the nonradiative recombination with pinhole-free surfaces.The results demonstrate that co-anti-solvents with a low boiling point polarity and nonpolar solvent contribute to superior performance of devices.The wide bandgap semi-transparent perovskite solar cell(ST-PSC)fabricated using co-anti-solvent exhibited a remarkable efficiency of 14.52%,and we successfully obtained an efficiency of 22.5%for 4 T perovskite-organic TSC.These findings inspire bright futures that TSCs could facilitate the development of more effective and sustainable solar energy solutions.
基金Projects(51673214,51673218,61774170)supported by the National Natural Science Foundation of ChinaProject(2017YFA0206600)supported by the National Key Research and Development Program of China。
文摘Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.
基金Project(21875286)supported by the National Natural Science Foundation of China。
文摘The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance.In this work,a new polymer acceptor PY9-T based on heptacyclic benzotriazole(Y9-C16)as a building block and thiophene unit as the linking unit was synthesized,which exhibited a low bandgap(1.37 eV)and a high extinction coefficient of the neat film(1.44×10^(5) cm^(−1)).When PY9-T was blended with the wide bandgap polymer donor PBDB-T,the all-polymer solar cells(APSCs)showed a high power conversion efficiency(PCE)of 10.45%with both high open circuit voltage of 0.881 V and short-circuit current density of 19.82 mA/cm^(2).In addition,APSCs based on PY9-T show good thermal stability,as evidenced by slight changes morphologies when annealed at 100℃.These results suggest that Y9-C16 provides a new building block to develop efficient and stable polymer acceptors.
基金Projects(2017YFE0131900,2017YFB0404500)supported by National Key Research and Development Program of ChinaProjects(91833306,91733302,62075094)supported by the National Natural Science Foundation of China+1 种基金Project(202003N4004)supported by the Ningbo Natural Science Foundation,ChinaProject(2020GXLH-Z-014)supported by the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University,China。
文摘A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2.
文摘Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
基金Project(62104261)supported by the National Natural Science Foundation of ChinaProject(2023JJ40695)supported by the Program of Natural Science Foundation of Hunan Province,China。
文摘Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8%to 26.7%.However,the unsatisfactory stability is still a major hurdle to the future commercialization of PSCs.Among various causes of instability,oxygen and photo-induced instability are indispensable aspects to be considered,especially there is a growing demand of manufacturing PSCs with low-cost environmental conditions.This review aims to provide a timely and comprehensive summary of the investigations related to the oxygen-and photo-induced decay(OP-decay)in perovskites.Key factors affecting the OP decay pathways and decay rate have been discussed.Techniques for the analysis of oxygen and photo-induced decay processes are included.Strategies for improving photo-oxygen stability have been summarized,from the aspects of suppressing the generation yield of superoxide,protecting perovskites from the generated superoxide,and slowing down the oxygen penetration,respectively.
基金National Natural Science Foundation of China (52162028)Natural Science Foundation of Jiangxi Province (20232ACB204011,20224BAB204001)+3 种基金Education Department of Jiangxi Province (GJJ2201001)Jingdezhen Municipal Science and Technology Bureau (2023GY001-16,2023ZDGG001 and 20224SF005-08)Opening Project of National Engineering Research Center for Domestic&Building Ceramics (GCZX2301)State Key Laboratory of New Ceramics and Fine Processing in Tsinghua University (KF202309,KF202414)。
文摘Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.
基金Project(22408404)supported by the National Natural Science Foundation of China。
文摘The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.
基金Projects(52272056,52372056,52232003)supported by the National Natural Science Foundation of ChinaProject(2023RC3044)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘Limited charge carrier lifetime(τ)leads to the short charge carrier diffusion length(L_(D))and thus impedes the improvement of power conversion efficiencies(PCEs)of organic solar cells(OSCs).Herein,anthracene(AN)as the additive is introduced into classical donor:acceptor pairs to increase theτ.Introducing AN efficiently enhances the crystallinity of the PM 6:BTP-eC 9+blend film to reduce the trap density and increase theτto 1.484μs,achieving the prolonged L_(D).The prolonged L_(D) enables the PM 6:BTP-eC 9+blend film to gain weaker charge carrier recombination,reduced leakage current,and shorter charge carrier extraction time in devices,compared with PM 6:BTP-eC 9 counterparts.Therefore,PM 6:BTP-eC 9+based OSCs achieve higher PCEs of 18.41%±0.16%than PM 6:BTP-eC 9 based ones(17.08%±0.11%).Moreover,the PM 6:L 8-BO+based OSC presents an impressive PCE of 19.14%.It demonstrates that introducing AN is an efficient method to increase theτfor prolonged L_(D),boosting PCEs of OSCs.
文摘Two polymer donor materials,namely pBDT-BTI-EH and pBDT-BTI-ME,were synthesized by copoly-merizing benzodithiophene(BDT)unit with bithiophene imide(BTI)unit containing 2-ethylhexyl and methyl alkyl side chains,respectively.Compared to pBDT-BTI-EH∶Y6 based organic solar cells(OSCs),the pBDT-BTI-ME∶Y6-based device exhibited higher charge mobilities,reduced charge recombination,more efficient exciton dissociation,and favorable film morphology,which leaded to increased short current density(Jsc),fill factor(FF)and thus a significant improvement in power conversion efficiency(PCE)from 9.31%to 15.69%.
文摘Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes and electron transportation.The dyad bearing branched alkyl chains with the branching sites close to the imide positions forms homogeneously amorphous state,while with branching sites being away from the imide positions the PBI core tend to stack with multiple modes.There are fewer energy trapping sites in the homogeneously amorphous state,but in the multiple stacking system the strongπ-πinteractions give more trapping sites.Our study demonstrates that the aggregation state of PBI-based acceptors plays an important role in the performances of organic solar cells(OSCs).Multiple stacking needs to be diminished to avoid the constrained exciton dissociation and retarded charge transport in the active layer.
基金Space Application System of China Manned Space Program。
文摘Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
文摘Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.
基金Projects(52063010,51961010)supported by the National Natural Science Foundation of China。
文摘MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed.
文摘In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed according to the operational principle of the electrical power system. This paper takes the solar battery array as an instance to introduce the designing principle of its hardware circuits, and presents the methods to design the interface and the software program of the single-chip microprocessor system. The software scheme of the upper computer is introduced at the end of this paper. It has been proved that this simulated system could effectively achieve the complete functions coupled with the simple design by using of various mature techniques in the fields of electronic circuits, single-chip microprocessor and numerical emulation.
文摘Four fused-benzotriazole based p-type polymers(BDT-TT,BDT-Se,BDD-TT,and BDD-Se)were designed and synthesized,and the fine-tuning on absorption band-widths and bandgaps via the backbone seleno-phene and thiophene strategies were reported.First,we introduced dithienothiophen[3,2-b]pyrrolobenzotriazole to co-polymerize with BDT-2F and synthesized BDT-TT.Then,we used selenophene to replace the thienothiophene units on the dithienothiophen[3,2-b]pyrrolobenzotriazole and synthesized BDT-Se.Compared to BDT-TT,BDT-Se showed a reduced bandgap from 2.0 eV to 1.89 eV.After that,we used BDD to replace BDT-2F and synthesized BDD-TT by co-polymerizing with dithienothiophen[3,2-b]pyrrolobenzotriazole.In comparison to BDT-TT,BDD-TT showed extended absorption band-width with the full-width-at-the-half-maximum(FWHM)increased from 138 nm to 229 nm and reduced bandgap from 2.0 eV to 1.71 eV.At last,we combined BDD and diselenophen[3,2-b]pyrrolo-benzotriazole and synthesized BDD-Se,which achieved extended absorption and further reduced bandgap(1.61 eV).Using PC71BM as the electron acceptor material,the organic solar cells fabricated by the four polymers gave the efficiencies of 1%-2%.