期刊文献+
共找到4,870篇文章
< 1 2 244 >
每页显示 20 50 100
Rolling element bearing instantaneous rotational frequency estimation based on EMD soft-thresholding denoising and instantaneous fault characteristic frequency 被引量:7
1
作者 赵德尊 李建勇 +2 位作者 程卫东 王天杨 温伟刚 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1682-1689,共8页
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b... The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR. 展开更多
关键词 rolling element bearing low signal-to-noise ratio empirical mode decomposition soft-thresholding denoising instantaneous fault characteristic frequency instantaneous rotational frequency
在线阅读 下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
2
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
在线阅读 下载PDF
Coupling denoising algorithm based on discrete wavelet transform and modified median filter for medical image 被引量:29
3
作者 CHEN Bing-quan CUI Jin-ge +2 位作者 XU Qing SHU Ting LIU Hong-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期120-131,共12页
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi... In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition. 展开更多
关键词 medical image image denoising discrete wavelet transform modified median filter coupling denoising
在线阅读 下载PDF
SAR image denoising based on wavelet-fractal analysis 被引量:4
4
作者 Zhao Jian Cao Zhengwen Zhou Mingquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期45-48,共4页
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum... Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced. 展开更多
关键词 Synthetic aperture radar image WAVELET Multifractal analysis denoising Hoelder exponent
在线阅读 下载PDF
Application of Hilbert-Huang transform to denoising in vortex flowmeter 被引量:4
5
作者 孙志强 周孑民 周萍 《Journal of Central South University of Technology》 EI 2006年第5期501-505,共5页
Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies wh... Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability. 展开更多
关键词 flow measurement vortex flowmeter denoising Hilbert-Huang transform signal processing
在线阅读 下载PDF
Denoising of X-ray pulsar observed profile using biorthogonal lifting wavelet transform 被引量:3
6
作者 Mengfan Xue Xiaoping Li +3 位作者 Yanming Liu Haiyan Fang Haifeng Sun Lirong Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期514-523,共10页
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di... In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform. 展开更多
关键词 X-ray pulsar denoising linear phase wavelet-scale dependent threshold
在线阅读 下载PDF
Noise level estimation method with application to EMD-based signal denoising 被引量:5
7
作者 Xiaoyu Li Jing Jin +1 位作者 Yi Shen Yipeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期763-771,共9页
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me... This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods. 展开更多
关键词 signal denoising empirical mode decomposition(EMD) Gaussian filter correlation coefficient noise level estimation
在线阅读 下载PDF
Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 被引量:2
8
作者 TAO Huamin DENG Qiuqun XIAO Shanzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1087-1096,共10页
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t... Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system. 展开更多
关键词 time series missing value 2D representation denoising autoencoder(DAE) RECONSTRUCTION
在线阅读 下载PDF
Online Wavelet Denoising via a Moving Window 被引量:15
9
作者 XIA Rui MENG Ke QIAN Feng WANG Zhen-Lei 《自动化学报》 EI CSCD 北大核心 2007年第9期897-901,共5页
在这份报纸,在即时信号处理降噪的传统的小浪的缺点被讨论,联机降噪的要求被考虑,并且一扇动人的窗户被介绍进传统的小浪变换。用动人的窗户,降噪途径的联机小浪被建议。联机降噪的一些问题例如边阶失真和 pseudo-Gibbs 现象,被讨... 在这份报纸,在即时信号处理降噪的传统的小浪的缺点被讨论,联机降噪的要求被考虑,并且一扇动人的窗户被介绍进传统的小浪变换。用动人的窗户,降噪途径的联机小浪被建议。联机降噪的一些问题例如边阶失真和 pseudo-Gibbs 现象,被讨论。为了解决这些问题,窗户延期和窗户,周期旋转也被建议。不同途径被广泛地在降噪域使用的信号测试。视觉结果和量的措施被介绍加亮新途径的可获得性。 展开更多
关键词 移动窗口 离散小波变换 在线降噪 窗口外延
在线阅读 下载PDF
The Translation Invariant Contourlet-like Transform for Image Denoising 被引量:3
10
作者 LIAN Qiu-Sheng CHEN Shu-Zhen 《自动化学报》 EI CSCD 北大核心 2009年第5期505-508,共4页
关键词 滤波技术 滤波器 图像 降噪
在线阅读 下载PDF
Local sparse representation for astronomical image denoising
11
作者 杨阿锋 鲁敏 +1 位作者 滕书华 孙即祥 《Journal of Central South University》 SCIE EI CAS 2013年第10期2720-2727,共8页
Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas ... Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image. 展开更多
关键词 astronomical image denoising LOCAL SPARSE representation(LSR) DICTIONARY learning ALTERNATING optimization
在线阅读 下载PDF
Range-spread target detector via coherent energy accumulation and block thresholding denoising
12
作者 ZHANG Yunjian PAN Pingping +1 位作者 DENG Zhenmiao WU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期873-880,共8页
A range-spread target(RST)detector is proposed for wideband radar.The detector,referred to as a conjugate multiplication and block thresholding(CMBT)detector,is simple for implementation in existing radar systems and ... A range-spread target(RST)detector is proposed for wideband radar.The detector,referred to as a conjugate multiplication and block thresholding(CMBT)detector,is simple for implementation in existing radar systems and has the advantage of minor calculation.First,the target energy of adjacent stretched echoes is coherently accumulated via conjugate multiplication and Fourier transform operations.It is noted that conjugate multiplication of two complex Gaussian distributed noise is complex double Gaussian distributed,leading to a signal to noise ratio(SNR)loss.Subsequently,considering the sparsity and clustering characteristics of the conjugate multiplication amplitude spectrum(CMAS),the block thresholding method is adopted for denoising,where the noise and cross-terms are adaptively smoothed,and the signal terms can be basically preserved.Finally,numerical simulation results for both synthetic and real radar data validate the effectiveness of the proposed detector,comparing with the conventional integration detector(ID),the spatial scattering density(SSD)detector,and waveform entropy(WE)and waveform contrast(WC)based detectors. 展开更多
关键词 wideband radar detection range-spread target conjugate multiplication block thresholding denoising
在线阅读 下载PDF
Underwater acoustic signal denoising model based on secondary variational mode decomposition
13
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal denoising Variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
在线阅读 下载PDF
Infrared Image Denoising Based on Single-wavelet and Multiwavelets
14
作者 FEIPei-yan GUOBao-long 《红外技术》 CSCD 北大核心 2005年第3期235-239,共5页
Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs compari... Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively. 展开更多
关键词 单波转换 多波转换 图像降噪 处理效果 红外线
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
15
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
线束地震技术与应用 被引量:1
16
作者 李亚林 段文胜 李大军 《石油地球物理勘探》 北大核心 2025年第1期253-272,共20页
针对山前带双复杂低信噪比区清晰、准确构造成像久攻不克的世界级地震勘探难题,提出线束地震技术解决方案。首先,采用基于“条带状密点排列片、均匀充分采样、纵向滚动”的线束地震采集,在纵、横两个方向对有效波和干扰波进行高精度均... 针对山前带双复杂低信噪比区清晰、准确构造成像久攻不克的世界级地震勘探难题,提出线束地震技术解决方案。首先,采用基于“条带状密点排列片、均匀充分采样、纵向滚动”的线束地震采集,在纵、横两个方向对有效波和干扰波进行高精度均匀、充分采样,克服了常规三维地震单炮横向采样严重不足的困难,实现了从室外组合压噪向室外采样高精度噪声(不压噪)、室内高精度去噪的转变;然后,充分挖掘线束地震采集资料的优势,配套形成了以线束地震炮域体去噪、高精度速度建模与偏移成像为代表的特色处理技术。塔里木盆地多个应用实例表明,线束地震实现了双复杂低信噪比区地震资料质的飞跃,大幅提高了复杂地质目标识别与解译能力,形成了可复制、可借鉴的地震采集处理技术,为解决国内外山前带双复杂区油气勘探开发的地震成像难题提供了一种新的有效技术手段和经验参考。 展开更多
关键词 线束地震 条带状排列片 均匀充分采样 炮域体去噪
在线阅读 下载PDF
VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法 被引量:1
17
作者 周锋 韦少帅 乔钢 《哈尔滨工程大学学报》 北大核心 2025年第7期1357-1366,共10页
针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关... 针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关性模态分量含有的有效信息;运用双线性ResNet18使网络具备捕获区分性强的局部信息;引入坐标注意力机制,使网络不仅能关注通道信息也能关注图像的空间信息。仿真结果表明:本文降噪方法相关系数更高、均方根误差均降低了20%;以0 dB条件为例,本文改进网络准确率相比于ResNet提升了8%,7种调制信号都达到了95%以上,调相调制准确率也达到了90%。 展开更多
关键词 水声通信 调制识别 残差网络 去噪 双线性模型 注意力机制 神经网络 变分模态
在线阅读 下载PDF
基于改进去噪扩散概率模型的风电机组故障样本生成方法 被引量:1
18
作者 孟昱煜 张沣琦 +2 位作者 火久元 常琛 陈峰 《振动与冲击》 北大核心 2025年第4期286-297,共12页
为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran... 为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。 展开更多
关键词 DDPM TRANSFORMER 风电机组 故障诊断 样本生成
在线阅读 下载PDF
基于DAE-BLS的锂离子电池剩余使用寿命预测方法 被引量:3
19
作者 张洪生 尚鑫磊 《计算机集成制造系统》 北大核心 2025年第3期1038-1047,共10页
为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的... 为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的健康因子(HI),并使用滑动时间窗口制备训练样本。其次,将样本输入DAE进行去噪处理。然后,将经过处理的样本输入BLS,预测电池RUL,并通过调整窗口大小和模型参数,得到最优模型。最后,利用MIT-Stanford电池退化数据集验证该方法的有效性。实验结果表明,相比于已有预测方法,所提方法在预测精度上具有更好的表现。 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 去噪自编码器 宽度学习系统
在线阅读 下载PDF
MCFA-UNet:结合多尺度融合与注意力机制的图像生成网络 被引量:1
20
作者 王铁君 张泽宇 +1 位作者 郭晓然 武娇 《计算机工程与应用》 北大核心 2025年第12期222-231,共10页
在图像生成领域,基于去噪扩散概率模型(DDPM)的深度学习方法已经取得了显著的进展。然而,在处理复杂纹理和细节丰富的图像时,现有模型生成的图像会出现模糊、纹理细节不清晰等问题,主要原因是原始DDPM采用的UNet网络在捕捉高度细节化图... 在图像生成领域,基于去噪扩散概率模型(DDPM)的深度学习方法已经取得了显著的进展。然而,在处理复杂纹理和细节丰富的图像时,现有模型生成的图像会出现模糊、纹理细节不清晰等问题,主要原因是原始DDPM采用的UNet网络在捕捉高度细节化图像特征时存在一定局限性。为解决这一问题,提出了一种基于多尺度卷积和融合注意力机制的新型UNet网络,命名为MCFA-UNet。该网络通过在编码器和解码器中引入残差块和线性注意力多尺度卷积模块,并在跳跃连接中加入多尺度融合注意力组件,提升了对图像细节的捕捉能力及生成图像的整体质量。实验结果显示,在唐卡数据集、Cifar10和ImageNet-64公共数据集上,采用MCFA-UNet的DDPM模型优于原始的DDPM模型,得到了更低的FID值和更高的主观评价得分,证明了其改进效果的显著性。 展开更多
关键词 图像生成 去噪扩散概率模型(DDPM) UNet网络 AIGC方法
在线阅读 下载PDF
上一页 1 2 244 下一页 到第
使用帮助 返回顶部