The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively ...The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks ...The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.展开更多
Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including...Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.展开更多
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m...In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.展开更多
This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this s...This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this system. It can optimize the process of piezoresi stive sensor calibration and compensation, then, a total error factor within 0.2 % of the sensor′s repeatability errors is obtained. Data are recorded and coeff icients are determined automatically by this system, thus, the sensor compensati on is simplified greatly. For operating easily, a wizard compensation program is designed to correct every error and to get the optimum compensation.展开更多
基金supported by Beijing Academy of Quantum Information Sciencessupported by the State Key Laboratory of Low Dimensional Quantum Physics+2 种基金the Start-up Fund provided by Tsinghua Universitythe financial support provided by the National Natural Science Foundation of China(Grant No.92065113)the Anhui Initiative in Quantum Information Technologies。
文摘The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.60921062)the National Natural Science Foundation of China (Grant No.60873014)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.61003082 and 60903059)
文摘The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.
基金The National High-Tech Research and Development Program of China(863 Program)2014AA01A705
文摘Processors have been playing important roles in both communication infrastructure systems and terminals.In this paper,both application specific and general purpose processors for communications are discussed including the roles,the history,the current situations,and the trends.One trend is that ASIPs(Application Specific Instruction-set Processors) are taking over ASICs(Application Specific Integrated Circuits) because of the increasing needs both on performance and compatibility of multi-modes.The trend opened opportunities for researchers crossing the boundary between communications and computer architecture.Another trend is the serverlization,i.e.,more infrastructure equipments are replaced by servers.The trend opened opportunities for researchers working towards high performance computing for communication,such as research on communication algorithm kernels and real time programming methods on servers.
基金supported partially by the National High Technical Research and Development Program of China (863 Program) under Grants No. 2011AA040101, No. 2008AA01Z134the National Natural Science Foundation of China under Grants No. 61003251, No. 61172049, No. 61173150+2 种基金the Doctoral Fund of Ministry of Education of China under Grant No. 20100006110015Beijing Municipal Natural Science Foundation under Grant No. Z111100054011078the 2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science under Grant No. Z121101002812005
文摘In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.
文摘This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this system. It can optimize the process of piezoresi stive sensor calibration and compensation, then, a total error factor within 0.2 % of the sensor′s repeatability errors is obtained. Data are recorded and coeff icients are determined automatically by this system, thus, the sensor compensati on is simplified greatly. For operating easily, a wizard compensation program is designed to correct every error and to get the optimum compensation.