The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational m...The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance a...The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance advantages, in that the total trip time can be reduced depending on the number of skipped stations, crowds of passengers can be rapidly evacuated at congested stations in peak periods, and the cost to transit companies is reduced. There is a contradiction between reducing the trip time under the SOS and increasing the passengers' waiting times under an all-stop scheme. Given this situation, the three objectives of our study were to minimize the waiting and trip times of all passengers and the travel times of trains. A comprehensive estimation model is presented for the SOS. The mechanism through which the trip time for all passengers is affected by the SOS is analyzed in detail. A 0-I integer programming formulation is established for the three objectives, and is solved using a tabu search algorithm. Finally, an example is presented to demonstrate that the estimation method for the SOS is capable of optimizing the timetable and operation schemes for a Chinese urban rail transit network.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
A proximal iterative algorithm for the mulitivalue operator equation 0 ∈ T(x) is presented, where T is a maximal monotone operator. It is an improvement of the proximal point algorithm as well know. The convergence o...A proximal iterative algorithm for the mulitivalue operator equation 0 ∈ T(x) is presented, where T is a maximal monotone operator. It is an improvement of the proximal point algorithm as well know. The convergence of the algorithm is discussed and all example is given.展开更多
If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a spec...If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a special numerical algorithm based on wavelets to study the L p continuity of non infinite smooth operators OpS m 0 , 0 ; in fact, we apply first special wavelets to symbol to get special basic operators, then we regroup all the special basic operators at given scale and prove that such scale operator’s continuity decreases very fast, we sum such scale operators and a symbol operator can be approached by very good compact operators. By correlation of basic operators, we get very exact pseudo-orthogonality and also L 2 → L 2 continuity for scale operators. By considering the influence region of scale operator, we get H 1 (= F 0 , 2 1 ) → L 1 continuity and L ∞→ BMO continuity. By interpolation theorem, we get also L p (= F 0 , 2 p ) → L p continuity for 1 〈 p 〈 ∞ . Our results are sharp for F 0 , 2 p → L p continuity when 1 ≤ p ≤ 2, that is to say, we find out the exact order of derivations for which the symbols can ensure the resulting operators to be bounded on these spaces.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model called the abstract evolutionary algorithm (AEA), which uni...There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model called the abstract evolutionary algorithm (AEA), which unifies most of the currently known evolutionary algorithms and describes the evolution as an abstract stochastic process composed of two fundamental abstract operators: abstract selection and evolution operators. In this paper, we first introduce the definitions of the generalized abstract selection and evolution operators. Then we discuss the characterization of some parameters related to generalized abstract selection and evolution operators. Based on these operators, we finally give the strong convergence of the generalized abstract evolutionary algorithm. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and...With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.展开更多
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ...Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.展开更多
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j...In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.展开更多
基金supported in part by the National Basic Research Program of China (No. JCKY2016203B032)
文摘The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金financed by the National Basic Research Program of China, under project ID 2012CB725403
文摘The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance advantages, in that the total trip time can be reduced depending on the number of skipped stations, crowds of passengers can be rapidly evacuated at congested stations in peak periods, and the cost to transit companies is reduced. There is a contradiction between reducing the trip time under the SOS and increasing the passengers' waiting times under an all-stop scheme. Given this situation, the three objectives of our study were to minimize the waiting and trip times of all passengers and the travel times of trains. A comprehensive estimation model is presented for the SOS. The mechanism through which the trip time for all passengers is affected by the SOS is analyzed in detail. A 0-I integer programming formulation is established for the three objectives, and is solved using a tabu search algorithm. Finally, an example is presented to demonstrate that the estimation method for the SOS is capable of optimizing the timetable and operation schemes for a Chinese urban rail transit network.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金Supported by the National Natural Science Foundation of China
文摘A proximal iterative algorithm for the mulitivalue operator equation 0 ∈ T(x) is presented, where T is a maximal monotone operator. It is an improvement of the proximal point algorithm as well know. The convergence of the algorithm is discussed and all example is given.
基金Supported by the Doctoral programme foundation of National Education Ministry of China
文摘If we use Littlewood-Paley decomposition, there is no pseudo-orthogonality for Ho¨rmander symbol operators OpS m 0 , 0 , which is different to the case S m ρ,δ (0 ≤δ 〈 ρ≤ 1). In this paper, we use a special numerical algorithm based on wavelets to study the L p continuity of non infinite smooth operators OpS m 0 , 0 ; in fact, we apply first special wavelets to symbol to get special basic operators, then we regroup all the special basic operators at given scale and prove that such scale operator’s continuity decreases very fast, we sum such scale operators and a symbol operator can be approached by very good compact operators. By correlation of basic operators, we get very exact pseudo-orthogonality and also L 2 → L 2 continuity for scale operators. By considering the influence region of scale operator, we get H 1 (= F 0 , 2 1 ) → L 1 continuity and L ∞→ BMO continuity. By interpolation theorem, we get also L p (= F 0 , 2 p ) → L p continuity for 1 〈 p 〈 ∞ . Our results are sharp for F 0 , 2 p → L p continuity when 1 ≤ p ≤ 2, that is to say, we find out the exact order of derivations for which the symbols can ensure the resulting operators to be bounded on these spaces.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金Supported by the National Science Foundation of China(60133010)Supported by the Science Foundation of Henan Province(2000110019)
文摘There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model called the abstract evolutionary algorithm (AEA), which unifies most of the currently known evolutionary algorithms and describes the evolution as an abstract stochastic process composed of two fundamental abstract operators: abstract selection and evolution operators. In this paper, we first introduce the definitions of the generalized abstract selection and evolution operators. Then we discuss the characterization of some parameters related to generalized abstract selection and evolution operators. Based on these operators, we finally give the strong convergence of the generalized abstract evolutionary algorithm. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202208)the Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQLZX0139)the National Natural Science Foundation of China(Grant No.61772295).
文摘With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.
基金supported by the National Natural Science Foundation of China(Project No.51767018)Natural Science Foundation of Gansu Province(Project No.23JRRA836).
文摘Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.
基金Supported by the Basic Scientific Research Projects of the Central University of China(ZXH2010D010)the National Natural Science Foundation of China(60979021/F01)~~
文摘In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.