期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
1
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
2
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system clustering
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
3
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
4
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
5
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
基于不平衡数据处理与加权软投票异质集成的农户贷款违约风险预测
6
作者 曹伟萍 张劲松 《计算机应用与软件》 北大核心 2025年第8期71-79,共9页
构建农户违约预测模型对深化农业信贷风险管理具有重要意义。针对违约数据不平衡问题,提出一种基于指标优化和不平衡数据处理的加权软投票异质集成模型。利用支持向量机递归特征消除法选取关键指标,结合模糊C均值聚类和SMOTE技术构建平... 构建农户违约预测模型对深化农业信贷风险管理具有重要意义。针对违约数据不平衡问题,提出一种基于指标优化和不平衡数据处理的加权软投票异质集成模型。利用支持向量机递归特征消除法选取关键指标,结合模糊C均值聚类和SMOTE技术构建平衡训练样本。集成六种基学习器,通过验证集确定软投票权重,融合各模型预测结果,获得最终预测。实验表明,该模型相比单一模型、同质和其他异质集成模型具有更高精度。线性支持向量机的系数权重分析显示,农业生产性收入、未偿还贷款等指标与违约风险正相关,金融产品关注度等指标与违约风险负相关。 展开更多
关键词 农户贷款 违约预测 递归消除 模糊C均值聚类 加权软投票
在线阅读 下载PDF
FUZZY ISODATA聚类法在地下水水化学分类中的应用 被引量:2
7
作者 王文科 吴在宝 《西安地质学院学报》 1991年第3期59-66,共8页
本文以杜热草场水化学资料为例,运用FUZZY ISODATA聚类方法对地下水水化学类型的划分进行了初步研究,并与传统的舒卡列夫法和基于模糊关系聚类法所得结果进行了对比,说明了本方法的可靠性。文中运用该法对研究区水化学成份划分的五种类... 本文以杜热草场水化学资料为例,运用FUZZY ISODATA聚类方法对地下水水化学类型的划分进行了初步研究,并与传统的舒卡列夫法和基于模糊关系聚类法所得结果进行了对比,说明了本方法的可靠性。文中运用该法对研究区水化学成份划分的五种类型,基本符合本区地下水化学成份形成与分布规律,分类合理,计算简便,特别是对水化学成份差别不大的地区更为适用。 展开更多
关键词 地下水 水化学 分类 聚类分析
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
8
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
9
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
特征加权距离与软子空间学习相结合的文本聚类新方法 被引量:22
10
作者 王骏 王士同 邓赵红 《计算机学报》 EI CSCD 北大核心 2012年第8期1655-1665,共11页
文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于... 文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于加权范数理论,提出了新的特征加权距离计算方法.接着,将其与软子空间学习的理论框架相结合,提出了面向模糊聚类的新的目标学习准则.通过向约束条件中引入熵指数r,从而扩展了模糊指数m的取值范围,并给出了物理解释.基于Zangwill收敛定理对算法的全局收敛性给出理论证明.实验表明,文中算法可以使软子空间学习和聚类分析同时进行,其性能比现有的相关算法有了较大的提高. 展开更多
关键词 模糊聚类 文本聚类 软子空间 特征加权距离 全局收敛性
在线阅读 下载PDF
基于特征加权理论的数据聚类算法 被引量:40
11
作者 费贤举 李虹 田国忠 《沈阳工业大学学报》 EI CAS 北大核心 2018年第1期77-81,共5页
针对数据挖掘过程中数据聚类操作的初始聚类数目和初始聚类中心确定困难的问题,提出了一种软子空间结合竞争合并机制的模糊加权聚类算法.通过对软子空间聚类算法的目标函数进行改写,并结合数据簇势的大小对各数据簇进行竞争与合并操作,... 针对数据挖掘过程中数据聚类操作的初始聚类数目和初始聚类中心确定困难的问题,提出了一种软子空间结合竞争合并机制的模糊加权聚类算法.通过对软子空间聚类算法的目标函数进行改写,并结合数据簇势的大小对各数据簇进行竞争与合并操作,实现了对数据的聚类处理.结果表明,该算法能够准确地对数据样本进行聚类,并且聚类结果与初始数据簇数目和初始聚类中心无关,能够满足对高维数据聚类处理的需要,具有较好的实际应用价值. 展开更多
关键词 数据挖掘 数据聚类 特征加权 软子空间聚类 竞争合并机制 模糊聚类算法 聚类中心 聚类数目
在线阅读 下载PDF
模糊神经网络的混合学习算法及其软测量建模 被引量:14
12
作者 刘瑞兰 苏宏业 褚健 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第12期2878-2881,共4页
提出了一阶TSK模糊神经网络的混合学习算法,算法由三部分组成:基于模糊聚类的网络初始化;基于梯度下降的规则前件的学习算法;基于部分最小二乘的规则后件的学习算法。该混合算法可以根据训练样本的分布自动确定模糊神经网络的初始值,当... 提出了一阶TSK模糊神经网络的混合学习算法,算法由三部分组成:基于模糊聚类的网络初始化;基于梯度下降的规则前件的学习算法;基于部分最小二乘的规则后件的学习算法。该混合算法可以根据训练样本的分布自动确定模糊神经网络的初始值,当输入变量个数多时不会出现模糊规则数爆炸现象,训练速度快,模型精度高。将混合学习算法应用到PTA工业过程中4-CBA含量的软测量建模中,取得了令人满意的效果。 展开更多
关键词 混合学习 TSK模糊神经网络 软测量 部分最小二乘 模糊聚类
在线阅读 下载PDF
井下基于动态指纹更新的指纹定位算法研究 被引量:4
13
作者 崔丽珍 王巧利 +1 位作者 郭倩倩 杨勇 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期818-824,共7页
围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Mark... 围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Markov Model)运动信息序列模型,通过用户无意识地参与RSSI(Received Signal Strength Indication)序列的采集,实现指纹数据库的动态更新。运用具有自学习能力的ANFIS(Adaptive Network-based Fuzzy Inference System)算法定位未知节点。实验结果表明:所提的井下基于动态指纹更新的指纹定位算法定位精度可达2.6 m,满足煤矿井下巷道的实时定位需求。 展开更多
关键词 煤矿井下 指纹匹配定位 fuzzy c-means clustering算法 区域划分 指纹库更新 hidden Markov model运动轨迹模型 adaptive network-based fuzzy inference system定位模型 定位精度
在线阅读 下载PDF
基于聚类动态LS-SVM的L-赖氨酸发酵过程软测量方法 被引量:14
14
作者 孙玉坤 王博 +1 位作者 黄永红 嵇小辅 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期404-409,共6页
针对生化反应过程中软测量模型存在的模型失效问题,提出了一种基于模糊C均值聚类(FCM)和动态LS-SVM的混合建模方法。首先,采用FCM算法将训练集分成具有不同聚类中心的子集,然后对每一类分别采用LS-SVM进行训练并建立子模型。对于带有新... 针对生化反应过程中软测量模型存在的模型失效问题,提出了一种基于模糊C均值聚类(FCM)和动态LS-SVM的混合建模方法。首先,采用FCM算法将训练集分成具有不同聚类中心的子集,然后对每一类分别采用LS-SVM进行训练并建立子模型。对于带有新信息的样本数据首先计算其对每一类的模糊隶属度函数,然后用隶属度最大的一类所对应的子模型进行动态学习,并更新子模型。将所提出的软测量建模方法用于对L-赖氨酸发酵过程关键生物量参数的预测,实验结果表明所提出的建模方法可以有效地增强软测量模型适应工况变化的能力,提高其预测精度。 展开更多
关键词 软测量 模糊C均值聚类 动态最小二乘支持向量机 L-赖氨酸发酵过程
在线阅读 下载PDF
软硬结合的快速模糊C-均值聚类算法的研究 被引量:7
15
作者 尹海丽 王颖洁 白凤波 《计算机工程与应用》 CSCD 北大核心 2008年第22期172-174,共3页
讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多... 讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 展开更多
关键词 模糊 C-均值算法 模糊聚类 软聚类 硬聚类
在线阅读 下载PDF
基于模糊C均值聚类的天文光谱特征线软离散化 被引量:5
16
作者 张继福 李鑫 杨海峰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第5期1435-1438,共4页
连续数值属性离散化是天文光谱数据预处理中的主要研究内容之一。针对天文光谱特征线,提出了一种基于改进模糊C均值聚类的天文光谱特征线软离散化算法。该算法首先利用样本的密度值选取特征线的候选初始模糊聚类中心,有效地克服了对噪... 连续数值属性离散化是天文光谱数据预处理中的主要研究内容之一。针对天文光谱特征线,提出了一种基于改进模糊C均值聚类的天文光谱特征线软离散化算法。该算法首先利用样本的密度值选取特征线的候选初始模糊聚类中心,有效地克服了对噪声数据敏感的缺陷;其次采用决策表中的相容性作为评判标准,动态的调节聚类参数,以达到优化的光谱特征线离散化效果;最后采用晚型星、类星体、高红移类星体SDSS天文光谱特征线数据集。实验验证了该算法具有较高的识别率,为天文光谱特征线数据预处理提供了一种新途径。 展开更多
关键词 天文光谱 特征线 离散化 模糊聚类 软划分
在线阅读 下载PDF
基于FCM聚类的气化炉温度多模型软测量建模 被引量:14
17
作者 钟伟民 李杰 +2 位作者 程辉 孔祥东 钱锋 《化工学报》 EI CAS CSCD 北大核心 2012年第12期3951-3955,共5页
水煤浆气化是煤炭资源高效清洁利用的重要技术。气化炉反应温度是关系装置能否长周期安全稳定运行的关键参数,但是热电偶在高温、高压和气固物流冲刷环境下,使用寿命有限。本文以一多喷嘴对置式水煤浆气化炉为研究对象,在多模型建模方... 水煤浆气化是煤炭资源高效清洁利用的重要技术。气化炉反应温度是关系装置能否长周期安全稳定运行的关键参数,但是热电偶在高温、高压和气固物流冲刷环境下,使用寿命有限。本文以一多喷嘴对置式水煤浆气化炉为研究对象,在多模型建模方法的基础上,以数据点间的相似程度作为多模型子区间的划分手段,结合最小二乘支持向量机建立了基于模糊C均值聚类的气化炉温度软测量模型。实际工业运行数据验证结果表明,该软测量模型拟合精度较高,模型泛化能力较强。 展开更多
关键词 水煤浆气化 模糊C均值聚类 最小二乘支持向量机 多模型 软测量建模
在线阅读 下载PDF
基于改进Fast-MCD的稳健数据预处理方法 被引量:4
18
作者 王魏 赵立杰 柴天佑 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期761-764,共4页
对于工业过程数据中的离群点,一般采用稳健估计技术处理.针对Fast-MCD算法中初值随机给定,以及当样本数据较大时,人为给定分堆个数的缺点,提出了一种基于模糊聚类的改进稳健估计算法,即采用聚类中心及聚类个数分别作为Fast-MCD算法的初... 对于工业过程数据中的离群点,一般采用稳健估计技术处理.针对Fast-MCD算法中初值随机给定,以及当样本数据较大时,人为给定分堆个数的缺点,提出了一种基于模糊聚类的改进稳健估计算法,即采用聚类中心及聚类个数分别作为Fast-MCD算法的初值及分堆个数选择依据,从而提高计算效率,并使样本数据较大时的分堆计算更合理.将本方法用于分析铝酸钠溶液的温度电导建模数据,实现了离群点的辨识,可以消除不规则数据对软测量建模的不合理影响.与Fast-MCD方法相比,它收敛速度快,计算效率高. 展开更多
关键词 稳健估计 软测量 离群点 模糊聚类 马氏距离
在线阅读 下载PDF
基于多神经网络模型的酯化反应软测量 被引量:7
19
作者 张宇 李柠 黄道 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期208-211,226,共5页
对模糊C-均值聚类算法加以改进,将系统输入数据进行模糊划分,分成具有几个不同聚类中心的子集;继而引入到多模型建模过程中,针对每个子集建立相应的径向基函数(RBF)网络模型。而全局模型则由各个子模型的输出加权组合。最后通过对聚合... 对模糊C-均值聚类算法加以改进,将系统输入数据进行模糊划分,分成具有几个不同聚类中心的子集;继而引入到多模型建模过程中,针对每个子集建立相应的径向基函数(RBF)网络模型。而全局模型则由各个子模型的输出加权组合。最后通过对聚合釜反应器软测量建模的研究,表明该方法具有拟合精度高和泛化能力强的特点,验证了此多模型建模方法的有效性和快速性。 展开更多
关键词 多模型 模糊C-均值聚类(FCM) 神经网络 软测量
在线阅读 下载PDF
基于改进核模糊聚类算法的软测量建模研究 被引量:23
20
作者 徐海霞 刘国海 +1 位作者 周大为 梅从立 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第10期2226-2231,共6页
针对发酵过程软测量建模采用单模型建模方法存在计算量大和精度较差的问题,提出一种基于改进核模糊聚类算法的多模型神经网络软测量建模方法。该方法首先使用主元分析方法对样本数据进行数据处理,所得主元变量作为模型的输入变量,然后... 针对发酵过程软测量建模采用单模型建模方法存在计算量大和精度较差的问题,提出一种基于改进核模糊聚类算法的多模型神经网络软测量建模方法。该方法首先使用主元分析方法对样本数据进行数据处理,所得主元变量作为模型的输入变量,然后使用基于粒子群优化算法的核模糊C均值聚类算法(PSKFCM)对数据集作聚类划分,最后针对每个聚类建立局部神经网络模型,多个局部神经网络模型估计结果的融合即为软测量模型的输出。将所提建模方法应用于红霉素发酵过程生物量浓度软测量建模,结果表明所建软测量模型具有较高的精度和良好的泛化能力。 展开更多
关键词 软测量 核模糊聚类 粒子群优化 多模型神经网络 发酵过程
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部