期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Consensus model of social network group decision-making based on trust relationship among experts and expert reliability 被引量:4
1
作者 WANG Ya CAI Mei JIAN Xinglian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1576-1588,共13页
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am... Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model. 展开更多
关键词 social network group decision-making(SN-GDM) trust relationship expert reliability consensus model probabilistic linguistic term set(PLTS).
在线阅读 下载PDF
Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis 被引量:7
2
作者 Jing Yang Jun Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期374-384,共11页
With the wide application of Web-2.0 and social software, there are more and more tag-related studies and applications. Because of the randomness and the personalization in users' tagging, tag research continues t... With the wide application of Web-2.0 and social software, there are more and more tag-related studies and applications. Because of the randomness and the personalization in users' tagging, tag research continues to encounter data space and semantics obstacles. With the min-max similarity (MMS) to establish the initial centroids, the traditional K-means clustering algorithm is firstly improved to the MMSK-means clustering algorithm, the superiority of which has been tested; based on MMSK-means and combined with latent semantic analysis (LSA), here secondly emerges a new tag clustering algorithm, LMMSK. Finally, three algorithms for tag clustering, MMSK-means, tag clustering based on LSA (LSA-based algorithm) and LMMSK, have been run on Matlab, using a real tag-resource dataset obtained from the Delicious Social Bookmarking System from 2004 to 2009. LMMSK's clustering result turns out to be the most effective and the most accurate. Thus, a better tag-clustering algorithm is found for greater application of social tags in personalized search, topic identification or knowledge community discovery. In addition, for a better comparison of the clustering results, the clustering corresponding results matrix (CCR matrix) is proposed, which is promisingly expected to be an effective tool to capture the evolutions of the social tagging system. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Application programs Data mining MATLAB SEMANTICS social networking (online) WEBSITES
在线阅读 下载PDF
Knowledge-oriented modeling for influencing factors of battle damage in military industrial logistics:An integrated method 被引量:2
3
作者 Xiong Li Xiao-dong Zhao Wei Pu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期571-587,共17页
Modeling influencing factors of battle damage is one of essential works in implementing military industrial logistics simulation to explore battle damage laws knowledge.However,one of key challenges in designing the s... Modeling influencing factors of battle damage is one of essential works in implementing military industrial logistics simulation to explore battle damage laws knowledge.However,one of key challenges in designing the simulation system could be how to reasonably determine simulation model input and build a bridge to link battle damage model and battle damage laws knowledge.In this paper,we propose a novel knowledge-oriented modeling method for influencing factors of battle damage in military industrial logistics,integrating conceptual analysis,conceptual modeling,quantitative modeling and simulation implementation.We conceptualize influencing factors of battle damage by using the principle of hierarchical decomposition,thus classifying the related battle damage knowledge logically.Then,we construct the conceptual model of influencing factors of battle damage by using Entity-Relations hip approach,thus describing their interactions reasonably.Subsequently,we extract the important influencing factors by using social network analysis,thus evaluating their importance quantitatively and further clarifying the elements of simulation.Finally,we develop an agent-based military industry logistics simulation system by taking the modeling results on influencing factors of battle damage as simulation model input,and obtain simulation model output,i.e.,new battle damage laws knowledge,thus verifying feasibility and effectiveness of the proposed method.The results show that this method can be used to support human decision-making and action. 展开更多
关键词 Battle damage Industrial logistics Entity-relationship approach social network analysis Agent-based simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部