期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Construction and application of pre-classified smooth semi-supervised twin support vector machine
1
作者 ZHANG Xiaodan QI Hongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期564-572,共9页
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe... In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results. 展开更多
关键词 SEMI-SUPERVISED twin support vector machine (TWSVM) pre-classified center-distance smooth
在线阅读 下载PDF
Fuzzy smooth support vector machine with different smooth functions 被引量:5
2
作者 Chuandong Qin Sanyang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期460-466,共7页
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G... Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM). 展开更多
关键词 smooth support vector machine (SSVM) fuzzy sig- moid function polynomial smooth function fuzzy membership Broyden-Fletcher-Gddfarb-Shanno (BFGS).
在线阅读 下载PDF
New family of piecewise smooth support vector machine 被引量:3
3
作者 Qing Wu Leyou Zhang Wan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期618-625,共8页
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th... Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines. 展开更多
关键词 support vector machine (SVM) piecewise smooth function smooth technique bound of convergence.
在线阅读 下载PDF
Quintic spline smooth semi-supervised support vector classification machine 被引量:1
4
作者 Xiaodan Zhang Jinggai Ma +1 位作者 Aihua Li Ang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期626-632,共7页
A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machin... A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient. 展开更多
关键词 SEMI-SUPERVISED support vector classification machine smooth quintic spline function convergence.
在线阅读 下载PDF
基于孪生数据信息的提高石油采收率技术智能决策
5
作者 张娜 王凌旭 +4 位作者 姚谋 安杰 苏升帅 张敏 蒲景阳 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期40-45,58,共7页
针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提... 针对当前提高石油采收率技术的传统人工筛选决策方法与现代数据分析决策方法各自的局限性,运用人工智能与数据分析技术,将领域专家知识和机器学习方法有机融合起来,建立基于孪生数据信息的提高石油采收率(EOR)智能决策系统。通过重构提高石油采收率数据信息并进行降噪提质,揭示不同EOR技术的驱油机理及油藏-流体适用条件;利用机器学习探究不同EOR油藏-流体参数权重,构建领域专家知识本体与机器学习推演的孪生数据信息融合与智能决策推理方法。通过Midway Sunset油藏案例验证了所建的基于孪生数据信息的EOR智能决策模型可靠性,可为老油田提高石油采收率技术快捷、科学、高效决策提供一定借鉴。 展开更多
关键词 采油技术智能决策 孪生数据信息 机器学习 支持向量机-SHAP 提高石油采收率
在线阅读 下载PDF
Twin-SVM和Twin-KSVC标志物检测与分类方法 被引量:2
6
作者 栾咏红 刘全 《计算机工程与设计》 北大核心 2016年第12期3306-3310,共5页
针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-... 针对交通标志中禁令标志和指示标志的检测和分类难题,提出一种基于Twin-SVM和Twin-KSVC的交通标志检测与分类方法。对交通标志图像的红色、蓝色和亮度3个通道进行光照归一化处理;在这3个通道上提取Haar-like特征,构建特征向量;采用Twin-SVM方法进行交通标志检测过程的特征训练与验证,采用Twin-KSVC方法进行交通标志分类过程的特征训练与验证。实验采用实测数据对算法进行测试与评价,实验结果表明,该方法可以有效地检测和识别常见的20类禁令和指示交通标志。 展开更多
关键词 交通标志 交通标志检测 交通标志分类 支持向量机 HAAR-LIKE特征 成对支持向量机
在线阅读 下载PDF
参数协同优化的TSVR增强型TSK模糊系统
7
作者 王维 赵云龙 +1 位作者 彭小玉 潘小东 《计算机科学》 北大核心 2025年第7期75-81,共7页
Takagi-Sugeno-Kang(TSK)模糊系统作为特殊的非线性回归系统,能够解决机器学习任务,但其处理高维问题的效果并不理想,且对于规则的确定和调整较为困难。为了优化该系统,将沿用模糊IF-THEN规则。首先运用模糊C均值聚类对数据集进行划分,... Takagi-Sugeno-Kang(TSK)模糊系统作为特殊的非线性回归系统,能够解决机器学习任务,但其处理高维问题的效果并不理想,且对于规则的确定和调整较为困难。为了优化该系统,将沿用模糊IF-THEN规则。首先运用模糊C均值聚类对数据集进行划分,将数据点嵌入表征点到模糊聚类中心隶属度的空间,进而利用孪生支持向量回归机(TSVR)确定两个回归平面,从而得到回归值。考虑到不同数据集适应不同的关键参数,如聚类数等,采用遗传算法(GA)进行统一参数寻优,简化了领域知识的先验设置,形成了TSVR-GA-TSK(TG-TSK)模糊系统。实验结果表明,相比于经典回归算法和典型的TSK模糊系统,TG-TSK模糊系统具有良好的回归精度和鲁棒性,在Nemenyi检验的两两比较中具有显著优势。 展开更多
关键词 TSK模糊系统 TSVR 遗传算法 协同优化 回归任务
在线阅读 下载PDF
基于SPA和IRCMMPE的旋转机械损伤识别方法
8
作者 李恒亮 张思婉 郭衡 《机电工程》 北大核心 2025年第6期1045-1054,共10页
基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策... 基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策略。首先,使用SPA将单通道信号分解为趋势项和去趋势项两种完全不同的分量,减少了分量的冗余,并将其组装为多通道信号以实现对样本的扩充;然后,采用IRCMMPE对多通道信号进行了特征提取以对比验证两个分量之间的相关性,获取了更能反映故障特性的特征;最后,将故障特征输入至SSA-SVM分类器中进行了故障识别,完成了对旋转机械的故障辨识和故障程度的判断,利用三个旋转机械数据集对SPA-IRCMMPE故障诊断方法的有效性进行了实验分析,并与其他故障诊断方法进行了对比研究。研究结果表明:SPA-IRCMMPE模型在诊断旋转机械不同故障类型时分别取得了100%和99.2%的识别准确率,平均识别准确率分别为99.76%和99.92%;而自制数据集的诊断精度达到了100%。相较于其他故障诊断方法,SPA-IRCMMPE模型仅需使用单个通道的振动信号且无需进行分量重要性评估,避免了分量取舍的问题,对振动信号的利用效率较高。 展开更多
关键词 旋转机械单通道信号 故障诊断 麻雀搜索算法优化支持向量机 改进精细复合多变量多尺度排列熵 平滑先验分析 离心泵 滚动轴承
在线阅读 下载PDF
Robust least squares projection twin SVM and its sparse solution 被引量:1
9
作者 ZHOU Shuisheng ZHANG Wenmeng +1 位作者 CHEN Li XU Mingliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi... Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. 展开更多
关键词 OUTLIERS robust least squares projection twin support vector machine(R-LSPTSVM) low-rank approximation sparse solution
在线阅读 下载PDF
结构化最大间隔双支持向量机在股票预测中的应用 被引量:4
10
作者 林明松 杨晓梅 杨志霞 《计算机工程与应用》 CSCD 北大核心 2024年第11期346-355,共10页
股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分... 股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分性,提出了结构化最大间隔双支持向量机,其分别针对正类样本和负类样本,寻找两个非平行的超平面,使每一类样本离本类样本的欧式距离尽可能小,同时离异类超平面的马氏距离尽可能大。8组基准数据集的实验结果表明,该方法在含噪声数据的分类问题上具有稳定的准确率,从而提升了模型的预测性能和抗噪能力。同时将其应用到股票涨跌趋势预测中,通过对上证综指、上证A指、上证380指数以及中国平安等14只股票实证分析的结果表明,相较于其他对比模型,结构化最大间隔双支持向量机表现出了较好的预测结果,具有一定的实用价值。 展开更多
关键词 分类问题 双支持向量机 数据结构 马氏距离 股票预测
在线阅读 下载PDF
基于GNSS监测的SSA-SVR模型边坡变形预测 被引量:7
11
作者 任文辉 杨晓华 +2 位作者 冯永年 杨玲 魏静 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期160-169,共10页
针对GNSS监测数据的非平稳性和其存在的噪声会影响边坡安全变形预测的问题,以吴华高速公路超深路堑边坡为例,提出了基于平滑先验分解(SPA)和奇异值分解(SVD)消噪的麻雀搜索算法(SSA)优化支持向量机回归(SVR)的边坡变形预测模型(SPA-SVD-... 针对GNSS监测数据的非平稳性和其存在的噪声会影响边坡安全变形预测的问题,以吴华高速公路超深路堑边坡为例,提出了基于平滑先验分解(SPA)和奇异值分解(SVD)消噪的麻雀搜索算法(SSA)优化支持向量机回归(SVR)的边坡变形预测模型(SPA-SVD-SSA-SVR模型),并对比分析了分解和消噪两种数据处理方式对边坡变形预测结果的影响。结果表明:该高边坡处于安全状态,整体变形较小,经SSA优化后的SVR模型(SSA-SVR模型)的预测效果较好,相较于传统SVR模型,其对监测点G1预测结果的MSE、MAE分别减小8.68%、3.82%,对监测点G2预测结果的MSE、MAE分别减小11.60%、3.26%;SPA分解和SVD消噪均可以减小GNSS监测数据的非平稳性和噪声对预测精度的影响,但单分解处理比单消噪处理的预测精度高,整合分解和消噪两种预处理的SPA-SVD-SSA-SVR模型预测效果更好,其对监测点G1预测结果的MSE、MAE分别减小31.06%、19.59%,对监测点G2预测结果的MSE、MAE分别减小28.59%、15.03%。研究结果为边坡变形监测数据的处理与边坡安全变形预测提供了新思路。 展开更多
关键词 边坡变形预测 平滑先验分解 奇异值分解 麻雀搜索算法 支持向量机回归
在线阅读 下载PDF
基于数字孪生的铣刀磨损状态识别方法研究 被引量:1
12
作者 水星 容芷君 +2 位作者 但斌斌 何强鉴 杨鑫 《组合机床与自动化加工技术》 北大核心 2024年第9期20-24,共5页
实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分... 实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分模态分解算法(VMD)分解铣刀振动信号得到包含磨损状态信息的模态分量;其次,引入多尺度排列熵(MPE)从包含磨损状态信息的模态分量中提取铣刀的非线性动力学特征,并取各有效模态分量的多尺度排列熵平均值作为特征矩阵;最后,通过遗传算法(GA)优化支持向量机(SVM)构建铣刀磨损状态识别模型。实验结果表明,所构建的数字孪生体具有良好识别效果,其识别精度可达97.33%。 展开更多
关键词 数字孪生 刀具磨损 状态识别 变分模态分解 多尺度排列熵 支持向量机
在线阅读 下载PDF
基于优化TQWT及孪生SVM的有载分接开关机械故障诊断 被引量:4
13
作者 余长厅 黎大健 +2 位作者 陈梁远 张磊 赵坚 《高压电器》 CAS CSCD 北大核心 2024年第10期110-118,共9页
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s... 为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。 展开更多
关键词 有载分接开关 机械故障 振动信号 品质因数可调小波变换 人工鱼群算法 孪生支持向量机
在线阅读 下载PDF
基于传感信号采集的电控发动机振动故障监测方法 被引量:3
14
作者 马晓 郑晅 柴艳娜 《传感技术学报》 CAS CSCD 北大核心 2024年第4期675-681,共7页
通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性... 通过调理振动信号可以更高效地监测振动故障。为此,提出基于传感信号采集的电控发动机振动故障监测方法。首先,搭建电控发电机传感信号采集与处理架构,通过放大传感信号增益、滤波和转换信号模数的方式处理待监测信号,为提高监测准确性奠定可靠的数据基础。通过小波包分解与重构,获取信号的时域参数和小波能谱熵,并构建三维特征量。然后,利用“一对一”分解策略优化孪生支持向量机,构造多元分类器,使其更适用于振动故障监测这一多类别分类问题,再输入待监测信号的特征量,通过确定故障类别实现持续性监测。仿真结果表明:该方法训练耗时的最大值仅为897 ms,对于转子摩擦振动、不平衡振动等5种类型故障的监测准确率始终在97%以上,在缩减训练样本后准确率仍保持在90%以上。 展开更多
关键词 信号与信息处理 振动故障监测 传感信号采集 电控发动机 信号调理 信号转换 小波能谱熵 孪生支持向量机
在线阅读 下载PDF
近邻密度辅助模糊优化孪生支持向量机的钢板表面缺陷分类 被引量:1
15
作者 侯政通 胡鹰 +1 位作者 乔磊明 邓志飞 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期1115-1126,共12页
为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,... 为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,构造了一种新的密度模糊隶属度函数对样本进行权重赋值;最后,在孪生支持向量机(TWSVM)的基础上,将构造的密度模糊隶属度函数作为优化条件嵌入模型内,提出了近邻密度辅助模糊优化的TWSVM算法,以提高分类效果。在数据集NEU上的实验结果表明,引入显著性检测算法后,重新设计的特征在整体准确率上提高了1.66%,同时采用优化后的算法进行缺陷分类,准确率达到98.33%,进一步提高了分类性能。 展开更多
关键词 图像处理 显著性检测 缺陷分类 孪生支持向量机 密度函数 K近邻
在线阅读 下载PDF
鲁棒的模糊最小二乘双参数间隔支持向量机算法
16
作者 杨贵燕 黄成泉 +3 位作者 罗森艳 蔡江海 王顺霞 周丽华 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第6期653-665,共13页
针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每... 针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能. 展开更多
关键词 双参数间隔支持向量机 孪生支持向量机 模糊隶属度 K-近邻
在线阅读 下载PDF
应用高光谱技术及MLSPTSVM模型检测热损伤大豆
17
作者 李明 刘瑶 刘忠艳 《中国粮油学报》 CAS CSCD 北大核心 2024年第4期158-164,共7页
进口大豆在运输过程中极易因储藏温度过高而造成热损伤,加剧大豆蛋白及油脂的品质恶化,对大豆质量造成影响。利用高光谱图像技术和多元最小二乘递归投影孪生支持向量机(MLSPTSVM)对大豆的热损伤进行检测。应用高光谱图像采集系统在400~1... 进口大豆在运输过程中极易因储藏温度过高而造成热损伤,加剧大豆蛋白及油脂的品质恶化,对大豆质量造成影响。利用高光谱图像技术和多元最小二乘递归投影孪生支持向量机(MLSPTSVM)对大豆的热损伤进行检测。应用高光谱图像采集系统在400~1000 nm范围内获取正常大豆、轻度热损伤、重度热损伤大豆的光谱图像。采用多种预处理方法进行光谱预处理,对预处理方法提高模型检测性能的有效性进行分析。结果表明,多元散射校正预处理搭配线性核的MLSPTSVM模型、原始光谱数据搭配非线性核的MLSPTSVM模型均能达到100%检测准确率,相较于经典检测模型具有显著优势。在实验样本数量大幅减少的情况下,应用线性核的模型检测准确率仍能达到100%。因此,结合MLSPTSVM模型的高光谱图像检测方法可有效地提高热损伤大豆检测精度,且具有良好的鲁棒性。 展开更多
关键词 高光谱图像 热损伤 大豆 投影孪生支持向量机 无损检测
在线阅读 下载PDF
支持向量机理论与算法研究综述 被引量:983
18
作者 丁世飞 齐丙娟 谭红艳 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第1期2-10,共9页
统计学习理论(statistical learning theory,SLT)是一种小样本统计理论,着重研究在小样本情况下的统计规律及学习方法性质。支持向量机(support vector machinse,SVM)是一种基于SLT的新型的机器学习方法,由于其出色的学习性能,已经成为... 统计学习理论(statistical learning theory,SLT)是一种小样本统计理论,着重研究在小样本情况下的统计规律及学习方法性质。支持向量机(support vector machinse,SVM)是一种基于SLT的新型的机器学习方法,由于其出色的学习性能,已经成为当前机器学习界的研究热点。该文系统介绍了支持向量机的理论基础,综述了传统支持向量机的主流训练算法以及一些新型的学习模型和算法,最后指出了支持向量机的研究方向与发展前景。 展开更多
关键词 FSVM GSVM 统计学习理论 支持向量机 训练算法 TSVMs
在线阅读 下载PDF
一类光滑支持向量机新函数的研究 被引量:42
19
作者 熊金志 胡金莲 +2 位作者 袁华强 胡天明 李广明 《电子学报》 EI CAS CSCD 北大核心 2007年第2期366-370,共5页
光滑函数在支持向量机中起着重要作用,本文研究如何得到一类新的光滑函数.用插值函数的方法导出了一个重要的递推公式,得到了一类新的光滑函数,从而解决了长期困扰人们的一个问题,即如何寻求性能更好的光滑函数问题.还证明了该类函数的... 光滑函数在支持向量机中起着重要作用,本文研究如何得到一类新的光滑函数.用插值函数的方法导出了一个重要的递推公式,得到了一类新的光滑函数,从而解决了长期困扰人们的一个问题,即如何寻求性能更好的光滑函数问题.还证明了该类函数的若干性能,其逼近精度比Sigmoid函数的积分函数高一个数量级,也明显高于一阶和二阶光滑多项式,为支持向量机提供了一类新的光滑函数. 展开更多
关键词 分类 支持向量机 数据挖掘 插值 光滑
在线阅读 下载PDF
加权光滑CHKS孪生支持向量机 被引量:14
20
作者 丁世飞 黄华娟 史忠植 《软件学报》 EI CSCD 北大核心 2013年第11期2548-2557,共10页
针对光滑孪生支持向量机(smooth twin support vector machines,简称STWSVM)采用的Sigmoid光滑函数逼近精度低和STWSVM对异常点敏感的问题,引入一种性能更好的光滑函数——CHKS函数,提出了光滑CHKS孪生支持向量机模型(smooth CHKS twin ... 针对光滑孪生支持向量机(smooth twin support vector machines,简称STWSVM)采用的Sigmoid光滑函数逼近精度低和STWSVM对异常点敏感的问题,引入一种性能更好的光滑函数——CHKS函数,提出了光滑CHKS孪生支持向量机模型(smooth CHKS twin support vector machines,简称SCTWSVM).在此基础上,根据样本点的位置为每个训练样本赋予不同的重要性,以降低异常点对非平行超平面的影响,提出了加权光滑CHKS孪生支持向量机(weighted smooth CHKS twin support vector machines,简称WSCTWSVM).不仅从理论上证明了SCTWSVM具有严凸性和任意阶光滑的性能,而且在数据集上的实验结果表明,相对于STWSVM,SCTWSVM可以在更短的时间内获得更高的分类精度,同时验证了WSCTWSVM的有效性和可行性. 展开更多
关键词 孪生支持向量机 光滑孪生支持向量机 CHKS函数 光滑 加权
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部