In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord...In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.展开更多
A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challe...A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challenging for the homing guidance.The defender missile is launched by the target and guided by a cooperative augmented proportional navigation(APN). At the same time, the target performs a one-switch maneuver to cooperate and minimize the defender's acceleration requirement. The problem is analyzed for arbitrary-order linear dynamics of the agents in the linearized form but validated by the mathematical simulations by using nonlinear kinematics. The perfect information of three agents' states is assumed. Then, a method to deal with the target-defender team is proposed. It contains a combined performance index penalizing the miss distance relative to the target and energy consumption in the whole duration. Besides, the specific miss distance related to the defender is regarded as an inequality constraint. An analytical solution for the smart guidance strategy against the APN guided defender is derived. Meanwhile, the control saturations are introduced to get more realistic and reasonable insights to this practical target-missile-defender problem. A simple but effective iterative searching technique is proposed to determine the saturation time points. The solution provides an optimal homing strategy to evade the defender with a specific miss distance and intercept the target with the minimum miss distance in the minimum energy manner. Nonlinear two-dimensional simulation results are used to validate the theoretical analysis. By comparison with the optimal differential game guidance(ODGG) and the combined minimum effort guidance(CMEG), the superiority of this smart guidance strategy is concluded.展开更多
基金supported by the National Natural Science Foundation of China(71871203,52005447,L1924063)Zhejiang Provincial Natural Science Foundation of China(LY18G010017,LQ21E050014).
文摘In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions.
基金supported by the National Natural Science Foundation of China(91216104 61503302)
文摘A smart homing guidance strategy with control saturation against a target-defender team is derived. It is noteworthy that a cooperative strategy of the target-defender team is applied,which has been proved more challenging for the homing guidance.The defender missile is launched by the target and guided by a cooperative augmented proportional navigation(APN). At the same time, the target performs a one-switch maneuver to cooperate and minimize the defender's acceleration requirement. The problem is analyzed for arbitrary-order linear dynamics of the agents in the linearized form but validated by the mathematical simulations by using nonlinear kinematics. The perfect information of three agents' states is assumed. Then, a method to deal with the target-defender team is proposed. It contains a combined performance index penalizing the miss distance relative to the target and energy consumption in the whole duration. Besides, the specific miss distance related to the defender is regarded as an inequality constraint. An analytical solution for the smart guidance strategy against the APN guided defender is derived. Meanwhile, the control saturations are introduced to get more realistic and reasonable insights to this practical target-missile-defender problem. A simple but effective iterative searching technique is proposed to determine the saturation time points. The solution provides an optimal homing strategy to evade the defender with a specific miss distance and intercept the target with the minimum miss distance in the minimum energy manner. Nonlinear two-dimensional simulation results are used to validate the theoretical analysis. By comparison with the optimal differential game guidance(ODGG) and the combined minimum effort guidance(CMEG), the superiority of this smart guidance strategy is concluded.