无人机遥感探测在军事侦察领域发挥着重要作用,偏振探测利用偏振光与物体相互作用产生的偏振变化来提高目标对比度。然而在复杂场景下,伪装小目标与背景特征差异较小且空间信息不足,存在检测困难的问题。为此提出一种偏振伪装小目标检...无人机遥感探测在军事侦察领域发挥着重要作用,偏振探测利用偏振光与物体相互作用产生的偏振变化来提高目标对比度。然而在复杂场景下,伪装小目标与背景特征差异较小且空间信息不足,存在检测困难的问题。为此提出一种偏振伪装小目标检测算法(Polarization Camouflaged Small Object Detection-YOLO,PCSOD-YOLO),设计了高效层注意力模块-坐标注意力特征提取模块和空间金字塔池化跨阶段局部通道-3D权重注意力感受野模块,捕获目标的偏振特征和语义信息,增强上下文信息理解能力;设计了动态小目标检测头,通过动态卷积增强对小目标特征提取能力的同时,利用不同尺度的特征信息,联合多通道特征信息输出小目标检测结果。构建伪装小目标偏振图像数据集(Polarization Image of Camouflaged Small Objects,PICSO)。在PICSO数据集上的实验表明,所提出的方法可以有效检测伪装小目标,mAP_(0.5)达到92.4%,mAP_(0.5:0.95)达到47.8%,检测速率达到60.6帧/s,满足实时性要求。展开更多
针对目前无人机航拍图像小目标检测算法存在的漏检、误检、精度与速度不平衡等问题,提出复合特征与多尺度融合的无人机小目标检测算法CM-YOLOv8s(composite and multi-scale YOLOv8s)。通过在空间金字塔池化模块引入通道特征,实现目标...针对目前无人机航拍图像小目标检测算法存在的漏检、误检、精度与速度不平衡等问题,提出复合特征与多尺度融合的无人机小目标检测算法CM-YOLOv8s(composite and multi-scale YOLOv8s)。通过在空间金字塔池化模块引入通道特征,实现目标复合特征质量提升;通过重建模型颈部结构,提高目标细节特征的保留比例;通过设计DRHead检测头,实现多尺度特征检测图融合,增强多尺度目标检测适应性;通过采用Wise-IoU损失函数提升模型收敛速度。相比于基准算法,改进后的CM-YOLOv8s算法参数量仅为3.5×10^(6),参数量降低了69%。实验结果表明,提出的CM-YOLOv8s算法在数据集VisDrone2019上的mAP50显著提升了6.8个百分点;同时,在UAV-DT和DIOR数据集上验证了提出算法的泛化性和有效性。展开更多
针对当前无人机(UAV)视角下小目标检测性能低以及漏检和误检的问题,提出基于YOLOv8改进的BDSYOLO(BiFPN-Dual-Small target detection-YOLO)模型。首先,使用RepViTBlock(Revisiting mobile CNN from ViT perspective Block)与EMA(Effici...针对当前无人机(UAV)视角下小目标检测性能低以及漏检和误检的问题,提出基于YOLOv8改进的BDSYOLO(BiFPN-Dual-Small target detection-YOLO)模型。首先,使用RepViTBlock(Revisiting mobile CNN from ViT perspective Block)与EMA(Efficient Multi-scale Attention)机制构造C2f-RE(C2f-RepViTBlock Efficient multi-scale attention)从而改进骨干网络中深层的C2f(faster implementation of CSP bottleneck with 2 Convolutions)模块,提升模型对小目标特征的提取能力并降低参数量;其次,使用双向特征金字塔网络(BiFPN)重构颈部网络,从而使不同层级的特征得以相互融合;然后,在改进颈部网络的基础上构造双重小目标检测层,并结合浅层和最浅层特征来提高模型对小目标的检测能力;最后,引入改进损失函数Inner-EIoU(Inner-Efficient-Intersection over Union),该函数使用更合理的宽高比衡量方式并解决交并比(IoU)自身的局限。实验结果表明,改进模型在VisDrone2019数据集上相对原始模型的精确率、召回率、mAP@50、mAP@50:95分别提升了8.5、7.7、9.2和6.3个百分点,而参数量仅为2.23×10~6,模型大小减小了19.1%。可见,所提模型在实现一定轻量化的同时显著提升了性能。展开更多
[目的/意义]为解决无人机平台下“三北”工程内蒙古地区植树位点(树坑)受复杂背景(灌木、杂草群、裸露沙土、起伏地形等)影响,容易出现树坑漏检错检问题,构建了一种针对该场景下的小目标检测模型——YOLOv10-MHSA(You Only Look Once ve...[目的/意义]为解决无人机平台下“三北”工程内蒙古地区植树位点(树坑)受复杂背景(灌木、杂草群、裸露沙土、起伏地形等)影响,容易出现树坑漏检错检问题,构建了一种针对该场景下的小目标检测模型——YOLOv10-MHSA(You Only Look Once version 10-Multi-head Self-Attention)。[方法]以YOLOv10为基准模型,采用分层特征增强策略,通过跨层信息补偿提升小目标语义表征的完整性,提高其对小目标特征描述的准确性;引入可变卷积核AKConv(Adaptive Kernel Convolution),使模型更精确地聚焦输入图像的特征;构建融合特征的多头自注意力机制MHSA以实现考虑复杂环境因素的有效特征获取;引入Focal-EIOU Loss(Focal Efficient Inter-section over Union Loss)替代原有CIOU Loss(Complete Intersection over Union Loss)作为边界框的回归损失,构建非线性优化策略,在保证训练稳定性的同时实现边界框参数的精确计算;最后,选择影响精准识别效果最大的两个因素,通过设计多尺度空间分布与光照强度梯度变化的对比实验,系统性验证了模型在复杂场景下的泛化性与鲁棒性。[结果和讨论]提出的模型YOLOv10-MHSA在实验数据集上的平均识别精度和检测准确率分别达96.1%和92.1%,相比原模型分别提高4.1%和5.1%,可满足无人机对“三北”工程内蒙古地区植树位点(树坑)进行实时识别的精度和速度要求。[结论]YOLOv10-MHSA模型通过引入动态特征增强模块,在维持原有检测效率的基础上,成功解决了复杂场景中植树位点小目标特征易湮没的检测瓶颈,这为无人机平台下“三北”工程内蒙古地区植树位点的遥感精准、快速检测提供了新方法。展开更多
文摘无人机遥感探测在军事侦察领域发挥着重要作用,偏振探测利用偏振光与物体相互作用产生的偏振变化来提高目标对比度。然而在复杂场景下,伪装小目标与背景特征差异较小且空间信息不足,存在检测困难的问题。为此提出一种偏振伪装小目标检测算法(Polarization Camouflaged Small Object Detection-YOLO,PCSOD-YOLO),设计了高效层注意力模块-坐标注意力特征提取模块和空间金字塔池化跨阶段局部通道-3D权重注意力感受野模块,捕获目标的偏振特征和语义信息,增强上下文信息理解能力;设计了动态小目标检测头,通过动态卷积增强对小目标特征提取能力的同时,利用不同尺度的特征信息,联合多通道特征信息输出小目标检测结果。构建伪装小目标偏振图像数据集(Polarization Image of Camouflaged Small Objects,PICSO)。在PICSO数据集上的实验表明,所提出的方法可以有效检测伪装小目标,mAP_(0.5)达到92.4%,mAP_(0.5:0.95)达到47.8%,检测速率达到60.6帧/s,满足实时性要求。
文摘针对目前无人机航拍图像小目标检测算法存在的漏检、误检、精度与速度不平衡等问题,提出复合特征与多尺度融合的无人机小目标检测算法CM-YOLOv8s(composite and multi-scale YOLOv8s)。通过在空间金字塔池化模块引入通道特征,实现目标复合特征质量提升;通过重建模型颈部结构,提高目标细节特征的保留比例;通过设计DRHead检测头,实现多尺度特征检测图融合,增强多尺度目标检测适应性;通过采用Wise-IoU损失函数提升模型收敛速度。相比于基准算法,改进后的CM-YOLOv8s算法参数量仅为3.5×10^(6),参数量降低了69%。实验结果表明,提出的CM-YOLOv8s算法在数据集VisDrone2019上的mAP50显著提升了6.8个百分点;同时,在UAV-DT和DIOR数据集上验证了提出算法的泛化性和有效性。
文摘针对当前无人机(UAV)视角下小目标检测性能低以及漏检和误检的问题,提出基于YOLOv8改进的BDSYOLO(BiFPN-Dual-Small target detection-YOLO)模型。首先,使用RepViTBlock(Revisiting mobile CNN from ViT perspective Block)与EMA(Efficient Multi-scale Attention)机制构造C2f-RE(C2f-RepViTBlock Efficient multi-scale attention)从而改进骨干网络中深层的C2f(faster implementation of CSP bottleneck with 2 Convolutions)模块,提升模型对小目标特征的提取能力并降低参数量;其次,使用双向特征金字塔网络(BiFPN)重构颈部网络,从而使不同层级的特征得以相互融合;然后,在改进颈部网络的基础上构造双重小目标检测层,并结合浅层和最浅层特征来提高模型对小目标的检测能力;最后,引入改进损失函数Inner-EIoU(Inner-Efficient-Intersection over Union),该函数使用更合理的宽高比衡量方式并解决交并比(IoU)自身的局限。实验结果表明,改进模型在VisDrone2019数据集上相对原始模型的精确率、召回率、mAP@50、mAP@50:95分别提升了8.5、7.7、9.2和6.3个百分点,而参数量仅为2.23×10~6,模型大小减小了19.1%。可见,所提模型在实现一定轻量化的同时显著提升了性能。
文摘[目的/意义]为解决无人机平台下“三北”工程内蒙古地区植树位点(树坑)受复杂背景(灌木、杂草群、裸露沙土、起伏地形等)影响,容易出现树坑漏检错检问题,构建了一种针对该场景下的小目标检测模型——YOLOv10-MHSA(You Only Look Once version 10-Multi-head Self-Attention)。[方法]以YOLOv10为基准模型,采用分层特征增强策略,通过跨层信息补偿提升小目标语义表征的完整性,提高其对小目标特征描述的准确性;引入可变卷积核AKConv(Adaptive Kernel Convolution),使模型更精确地聚焦输入图像的特征;构建融合特征的多头自注意力机制MHSA以实现考虑复杂环境因素的有效特征获取;引入Focal-EIOU Loss(Focal Efficient Inter-section over Union Loss)替代原有CIOU Loss(Complete Intersection over Union Loss)作为边界框的回归损失,构建非线性优化策略,在保证训练稳定性的同时实现边界框参数的精确计算;最后,选择影响精准识别效果最大的两个因素,通过设计多尺度空间分布与光照强度梯度变化的对比实验,系统性验证了模型在复杂场景下的泛化性与鲁棒性。[结果和讨论]提出的模型YOLOv10-MHSA在实验数据集上的平均识别精度和检测准确率分别达96.1%和92.1%,相比原模型分别提高4.1%和5.1%,可满足无人机对“三北”工程内蒙古地区植树位点(树坑)进行实时识别的精度和速度要求。[结论]YOLOv10-MHSA模型通过引入动态特征增强模块,在维持原有检测效率的基础上,成功解决了复杂场景中植树位点小目标特征易湮没的检测瓶颈,这为无人机平台下“三北”工程内蒙古地区植树位点的遥感精准、快速检测提供了新方法。