期刊文献+
共找到512篇文章
< 1 2 26 >
每页显示 20 50 100
Research on fast detection method of infrared small targets under resourceconstrained conditions 被引量:2
1
作者 ZHANG Rui LIU Min LI Zheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期582-587,共6页
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ... Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions. 展开更多
关键词 infrared UAV image fast small object detection low impedance loss function
在线阅读 下载PDF
Compressive sensing for small moving space object detection in astronomical images
2
作者 Rui Yao Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期378-384,共7页
It is known that detecting small moving objects in as- tronomical image sequences is a significant research problem in space surveillance. The new theory, compressive sensing, pro- vides a very easy and computationall... It is known that detecting small moving objects in as- tronomical image sequences is a significant research problem in space surveillance. The new theory, compressive sensing, pro- vides a very easy and computationally cheap coding scheme for onboard astronomical remote sensing. An algorithm for small moving space object detection and localization is proposed. The algorithm determines the measurements of objects by comparing the difference between the measurements of the current image and the measurements of the background scene. In contrast to reconstruct the whole image, only a foreground image is recon- structed, which will lead to an effective computational performance, and a high level of localization accuracy is achieved. Experiments and analysis are provided to show the performance of the pro- posed approach on detection and localization. 展开更多
关键词 compressive sensing small space object detection localization astronomical image.
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:3
3
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络 被引量:6
4
作者 董一兵 曾辉 侯少杰 《计算机工程与应用》 北大核心 2025年第3期94-110,共17页
针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了... 针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了解释。设计了一种轻量化的特征融合网络(UAV_RepGFPN),提出新的特征融合路径以及特征融合模块DBB_GELAN,降低参数量和计算量的同时,提高特征融合网络的性能。使用部分卷积(PConv)和三重注意力机制(Triplet Attention)构建特征提取模块(FTA_C2f),并引入ADown下采样模块,通过对输入特征图维度的重新排列和细粒度调整,以提升模型中深层网络对空间特征的捕捉能力,并进一步降低参数量和计算量。优化YOLOv9的可编程梯度信息(programmable gradient information,PGI)策略,设计基于上下文引导(Context_guided)的可逆架构,并额外生成三个辅助检测头,提出UAV_PGI可编程梯度方法,避免传统深度监督中多路径特征集成可能导致的语义信息损失。为了验证模型的有效性及泛化能力,在VisDrone 2019测试集上开展了对比实验,结果显示,与YOLOv8s相比,LMUAV-YOLOv8s的准确度、召回率、mAP@0.5和mAP@0.5:0.95等指标分别提升了4.2、3.9、5.1和3.0个百分点,同时参数量减少了63.9%,计算量仅增加0.4 GFLOPs,实现了检测性能与资源消耗的良好平衡。基于NVIDIA Jetson Xavier NX嵌入式平台的推理实验结果显示:与基线模型相比,该算法能够在满足实时检测要求的条件下,获得更高的检测精度,对于无人机实时目标检测场景具有较好的适用性。借助类激活图,对算法的决策过程进行了可视化分析,结果表明,该模型具备更优异的小尺度特征提取和高分辨率处理能力。 展开更多
关键词 小目标检测 多尺度 轻量化 YOLOv8 可编程梯度信息
在线阅读 下载PDF
基于LDF-YOLO的小目标检测方法 被引量:1
5
作者 刘洋 任旭虎 +1 位作者 刘宝弟 刘伟锋 《电子测量技术》 北大核心 2025年第12期156-165,共10页
小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络... 小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络中引入了特征转换模块,设计了针对微小物体的检测头LP-Detect;其次,借鉴残差门控机制和局部特征增强机制设计了LR-C2f模块,增强模型提取局部特征的能力;最后,融入了局部特征增强模块,以强化骨干网络提取小目标信息的能力。在公开数据集Tiny Person上,LDF-YOLO比原YOLOv8在mAP0.5上提高了4.5%,召回率提高了5.5%,实验结果验证了改进方法的有效性,同时在NWPU VHR-10和VisDrone2019数据集上做了泛化对比实验,经实验表明各项指标均有提升。 展开更多
关键词 小目标检测 YOLOv8 残差门控机制 特征转换 特征融合
在线阅读 下载PDF
自然环境下基于改进YOLOv7的梨花识别方法 被引量:2
6
作者 张秀花 魏华杰 +3 位作者 孔德刚 刘尚坤 黄征 王洪森 《农业工程学报》 北大核心 2025年第2期224-232,共9页
针对自然环境下梨花易被遮挡、背景杂乱、光照条件与目标距离不断变化等特点导致梨花识别难和精度不高的问题,该研究提出了一种基于改进YOLOv7模型的梨花识别算法。该算法首先加入P2小目标层,增加了特征提取与模型多尺度融合能力,使被... 针对自然环境下梨花易被遮挡、背景杂乱、光照条件与目标距离不断变化等特点导致梨花识别难和精度不高的问题,该研究提出了一种基于改进YOLOv7模型的梨花识别算法。该算法首先加入P2小目标层,增加了特征提取与模型多尺度融合能力,使被遮挡的梨花目标更好地被捕获;其次,在输出检测端末尾加入CBAM(convolutional block attention module)注意力机制模块,提高模型的上下文理解能力,提升YOLOv7在各种场景下(不同光照条件、复杂背景等)的表现;最后,将CIoU(complete intersection over union)损失函数优化为NWD(normalized weighted distance)损失函数,针对不同形状的目标进行精确的边界框回归,提高模型对复杂背景梨花目标与远距离梨花目标的检测精度。试验结果表明:改进模型与原模型相比,精确率、召回率、mAP和F1-score分别提高了2.1、1.2、1.9和0.6个百分点,达到了99.4%、99.6%、96.4%和89.8%;与其他主流算法相比,各评价指标均有优势。研究结果可为梨园自然环境下梨花精准识别提供支撑。 展开更多
关键词 梨花 图像识别 YOLOv7 自然环境 小目标层 CBAM 损失函数
在线阅读 下载PDF
基于大内核自适应融合的小目标检测算法 被引量:1
7
作者 王磊 胡君红 任洋 《计算机工程》 北大核心 2025年第6期65-73,共9页
针对当前基于卷积神经网络的单阶段目标检测算法(YOLO系列、VFNet等)在高空拍摄场景下目标背景复杂、检测精度低、特征混叠等问题,提出一种端到端的目标检测算法CSPENet。首先,采用基于大内核深度卷积CSPNeXt作为模型主干,提高模型捕捉... 针对当前基于卷积神经网络的单阶段目标检测算法(YOLO系列、VFNet等)在高空拍摄场景下目标背景复杂、检测精度低、特征混叠等问题,提出一种端到端的目标检测算法CSPENet。首先,采用基于大内核深度卷积CSPNeXt作为模型主干,提高模型捕捉全局上下文的能力;其次,通过引入特征细化模块(FRM)在空间和通道维度上生成自适应权重,可有效抑制混叠特征,并在特征融合阶段添加基于移动网络的感受野注意力(RFA)机制解决大内核参数共享问题;最后,采用EIoU损失函数作为模型的回归损失函数,并拆分预测框和真实框纵横比的影响因子,以提高模型收敛速度并改善定位效果。实验结果表明,CSPENet在VisDrone-DET数据集上相对于DINO算法平均准确率均值提升4.4百分点,为小目标检测算法的研究及其应用提供新的参考方案。 展开更多
关键词 大内核 小目标 上下文信息 特征细化 自适应融合 感受野
在线阅读 下载PDF
基于改进YOLOv8的汽车门板紧固件检测算法 被引量:1
8
作者 王晓辉 贾韫硕 郭丰娟 《计算机工程与设计》 北大核心 2025年第1期298-306,共9页
针对汽车门板紧固件在复杂场景下存在的检测准确度较低和实时性较差的问题,提出一种小目标改进算法YOLOv8-SOD(small object detection)。在主干网络引入SPD(space-to-depth)模块和自适应权重分配模块,在算法的颈部网络输出位置增加选... 针对汽车门板紧固件在复杂场景下存在的检测准确度较低和实时性较差的问题,提出一种小目标改进算法YOLOv8-SOD(small object detection)。在主干网络引入SPD(space-to-depth)模块和自适应权重分配模块,在算法的颈部网络输出位置增加选择性注意力模块,将CIOU损失函数替换为MPDIOU损失函数。实验结果表明,YOLOv8-SOD算法平均检测精度为99.1%,比模板匹配方法和YOLOv8算法分别提高了9.4%、2%,达到了工厂生产流水线的检测标准,具有实用价值。 展开更多
关键词 汽车门板紧固件检测 小目标 自适应权重分配 无参注意力 选择性注意力 损失函数 深度学习
在线阅读 下载PDF
基于改进YOLOv7的无人机图像小目标检测算法 被引量:1
9
作者 金涛 李昭蒂 《实验室研究与探索》 北大核心 2025年第7期118-124,143,共8页
针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新... 针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新度量改进损失函数,以更精确衡量边界框相似性。此外,使用轻量级上采样算子CARAFE扩大感受野并聚合上下文信息。在VisDrone2019和NWPU VHR-10数据集上的实验表明,改进算法与原算法相比,mAP0.5和mAP0.5∶0.95指标均有显著提升,且与其他主流算法相比,检测精度也有明显优势。该方法为复杂环境下无人机图像小目标检测的实际应用提供了技术支撑,有助于推动相关领域的技术进步。 展开更多
关键词 无人机图像 YOLOv7算法 小目标检测 注意力机制 激活函数
在线阅读 下载PDF
基于级联查询-位置关系的输电线路多金具检测方法 被引量:1
10
作者 翟永杰 王璐瑶 +3 位作者 赵晓瑜 胡哲东 王乾铭 王亚茹 《图学学报》 北大核心 2025年第2期288-299,共12页
针对输电线路航拍图像的金具目标尺寸小与密集遮挡问题,提出了基于级联查询-位置关系的输电线路多金具检测方法(CQPR)。首先提出了级联稀疏查询模块,通过小尺度特征图上小目标的粗略位置来查询大尺度特征图中的小目标精确位置,提高小目... 针对输电线路航拍图像的金具目标尺寸小与密集遮挡问题,提出了基于级联查询-位置关系的输电线路多金具检测方法(CQPR)。首先提出了级联稀疏查询模块,通过小尺度特征图上小目标的粗略位置来查询大尺度特征图中的小目标精确位置,提高小目标金具检测的准确性。接着,提出了位置特征关系模块(PRM),通过利用图像中不同金具之间的位置关系建立PRM,提取金具位置关系,丰富遮挡区域的特征,进而优化了密集遮挡下的金具检测效果。多个基线模型上的实验结果表明,将CQPR应用到基线检测框架时,Faster R-CNN,Cascade R-CNN,Libra R-CNN和Dynamic R-CNN的准确率分别达到82.9%,82.4%,83.7%和77.3%,优于其他先进目标检测模型,对其中小目标金具和存在遮挡情况的金具检测准确率的提高较为明显,推理速度也有一定的提高,同时兼顾定位精度与检测实时性。 展开更多
关键词 输电线路 金具 深度学习 目标检测 小目标 密集遮挡
在线阅读 下载PDF
基于改进YOLOv5的骑行者头盔佩戴检测方法
11
作者 胡青松 单露露 +2 位作者 刘许 李世银 孙彦景 《南京信息工程大学学报》 北大核心 2025年第4期494-505,共12页
未佩戴或未正确佩戴头盔将对骑行人员生命安全造成重大威胁,人工督查不但工作量大效率低下,而且难以做到全区域全时段覆盖.本文提出一种基于改进YOLOv5的骑行者头盔佩戴检测方法,通过监控摄像头对骑行人员的头盔佩戴情况进行智能检测和... 未佩戴或未正确佩戴头盔将对骑行人员生命安全造成重大威胁,人工督查不但工作量大效率低下,而且难以做到全区域全时段覆盖.本文提出一种基于改进YOLOv5的骑行者头盔佩戴检测方法,通过监控摄像头对骑行人员的头盔佩戴情况进行智能检测和自动识别.首先,构建了包括不同地点、不同视角、不同天气、不同时段的骑行者头盔佩戴数据集,为研究奠定基础.随后提出一种基于改进YOLOv5的头盔佩戴检测模型,通过改进YOLOv5的多尺度特征融合模块,提升小目标检测效果;引入ECA注意力机制,强化特征图融合效果,显著提升模型检测精度;基于GSConv对Neck部分进行轻量化处理,有效地降低模型的检测耗时.实验结果表明,本文算法对骑行者头盔佩戴情况具有良好的检测性能,mAP达到93.2%,相较YOLOX提升1.9个百分点,单张图片检测耗时15.23 ms,在保证较高检测速率的同时检测精度更高,具有一定的应用价值. 展开更多
关键词 头盔检测 小目标检测 多尺度特征 注意力机制 模型压缩
在线阅读 下载PDF
基于改进YOLOv8的轨道小尺度异物入侵算法研究
12
作者 冯庆胜 付明雨 +2 位作者 姚泽圆 刘杨 梁天添 《现代电子技术》 北大核心 2025年第11期174-179,共6页
针对当前列车轨道障碍物检测方法存在的小目标检测精度低、模型过大且部署成本高等问题,文中提出一种改进的YOLOv8-SGFE轨道侵限物检测模型。首先,为了减少网络的计算量,在小目标检测模块SPD-Conv的基础上,设计了一个SGConv模块,并用其... 针对当前列车轨道障碍物检测方法存在的小目标检测精度低、模型过大且部署成本高等问题,文中提出一种改进的YOLOv8-SGFE轨道侵限物检测模型。首先,为了减少网络的计算量,在小目标检测模块SPD-Conv的基础上,设计了一个SGConv模块,并用其替换YOLOv8主干层中的普通卷积层;其次,为了增强模型的感知能力,将高效多尺度注意力EMA与C2f-Faster模块相结合,构成C2f-Faster-EMA模块,并用其替换YOLOv8中的C2f模块;最后,将改进后的YOLOv8-SGFE模型应用于自制的铁路轨道侵限物数据集。与YOLOv8模型相比,文中模型参数量下降36.04%,FLOPs由28.7×10^(9)减少到19×10^(9),在模型计算量大幅降低的情况下,mAP提高2.5%。实验结果表明,所提算法具有更高的检测精度,模型参数量及计算负载更小,不仅适用于复杂环境下的轨道障碍物检测,同时更易于部署到移动端设备中。 展开更多
关键词 轨道异物入侵 小目标检测 部分卷积 高效多尺度注意力 YOLOv8 轻量化
在线阅读 下载PDF
基于INC4-YOLO的菌落计数方法研究
13
作者 陈教料 王振舵 潘立 《高技术通讯》 北大核心 2025年第8期901-910,共10页
针对菌落图像中小菌落易漏检的问题,提出了一种基于INC4-YOLO(you only look once)的计数方法,实现精准的菌落计数。采用带残差结构的Inception模块(Inception module with residual connection,IncRes)替换YOLOv5骨干网络中的Bottlenec... 针对菌落图像中小菌落易漏检的问题,提出了一种基于INC4-YOLO(you only look once)的计数方法,实现精准的菌落计数。采用带残差结构的Inception模块(Inception module with residual connection,IncRes)替换YOLOv5骨干网络中的Bottleneck模块,以增强图像特征提取能力。从网络的浅层特征中引出一个小目标检测头,以增强算法在训练过程中对小菌落的注意力。分别在标注微生物自动识别数据集(annotated germs for automated recognition,AGAR)和真实菌落计数场景下对INC4-YOLO进行计数性能测试。实验结果表明,在AGAR测试集中,提出的算法在小菌落的平均百分比绝对值计数误差(mean absolute percentage error,MAPE)比其他先进目标检测算法降低了2%;真实菌落计数场景下,INC4-YOLO的MAPE相比YOLOv5降低了7%,表明该算法可帮助菌落计数设备实现精准计数。 展开更多
关键词 菌落计数 目标检测 改进YOLOv5 Inception模块 小目标检测
在线阅读 下载PDF
深度学习小目标检测算法综述
14
作者 张琴 郭为安 《计算机应用研究》 北大核心 2025年第10期2893-2904,共12页
小目标检测是目标检测领域的重要分支,在智能监控、无人驾驶、医学影像分析和遥感监测等实际应用中具有重要价值,然而,由于小目标像素占比小、特征表达弱、背景复杂,以及检测精度与速度难以平衡,其技术挑战仍然突出。在广泛文献调研的... 小目标检测是目标检测领域的重要分支,在智能监控、无人驾驶、医学影像分析和遥感监测等实际应用中具有重要价值,然而,由于小目标像素占比小、特征表达弱、背景复杂,以及检测精度与速度难以平衡,其技术挑战仍然突出。在广泛文献调研的基础上,梳理了小目标检测的技术挑战与解决方案,分析了特征表达不足、上下文信息利用不充分、样本不平衡等核心问题,总结了多尺度特征融合、注意力机制、知识蒸馏等关键技术进展。基于MS COCO和TinyPerson数据集,对主流算法的检测效率与精度进行对比,揭示了不同方法的优劣,并探讨了生成式特征学习、自监督学习、动态架构设计等未来研究方向,为小目标检测技术发展提供参考。 展开更多
关键词 小目标检测 多尺度特征融合 注意力机制 样本均衡 轻量级网络 鲁棒性
在线阅读 下载PDF
面向遥感小目标检测的实例间特征聚合方法研究
15
作者 王海涛 艾晨 +1 位作者 谭福 高硕 《宇航学报》 北大核心 2025年第7期1467-1474,共8页
针对遥感图像小目标检测中特征缺失与定位精度低的问题,提出一种融合实例特征交互与自适应回归度量的检测框架。通过构建动态图结构的实例间特征聚合网络,利用高置信度实例引导弱目标特征增强,减少因下采样导致的漏检;同时设计分段平滑W... 针对遥感图像小目标检测中特征缺失与定位精度低的问题,提出一种融合实例特征交互与自适应回归度量的检测框架。通过构建动态图结构的实例间特征聚合网络,利用高置信度实例引导弱目标特征增强,减少因下采样导致的漏检;同时设计分段平滑Wasserstein损失,将边界框建模为2D高斯分布,结合一阶与二阶距离度量,优化多尺度定位精度。在AI-TOD v1/v2和DOTA v2数据集上的实验结果表明,该方法在小目标检测精度、特征增强能力和回归优化效果方面均取得显著提升,同时保持了较低的计算和参数开销。该方法为高分辨率遥感场景下的微小目标检测提供了轻量化解决方案。 展开更多
关键词 遥感小目标检测 特征聚合增强 图神经网络 Wasserstein距离 边界框回归
在线阅读 下载PDF
改进的YOLOv8无人机小目标检测算法
16
作者 王燕妮 张婧菲 《探测与控制学报》 北大核心 2025年第5期44-50,共7页
针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷... 针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷积,使得模型能够适应复杂的场景;优化了颈部结构,将原有的检测头替换成小目标检测层,使模型更加轻量化,并提高网络对小目标的感知能力。实验数据表明,改进后的算法相比原算法在VisDrone2019数据集上mAP@0.5和mAP@0.5:0.95分别提高了2.4%和1.8%,并且参数量为原先的71%。 展开更多
关键词 小目标检测 NWD损失函数 小目标检测层 可变形卷积
在线阅读 下载PDF
石英坩埚内壁缺陷检测平台搭建与算法研究
17
作者 赵谦 许东巍 +2 位作者 缪正丽 郑轩 赵曼 《太阳能学报》 北大核心 2025年第3期421-427,共7页
目前石英坩埚缺陷主要使用人工目检,仅靠人工无法完成准确的分类以及全量计数。该文通过使用六自由度机械臂、旋转台搭建一套石英坩埚缺陷检测平台,结合背光源、高速相机等设备获取高清晰度的坩埚缺陷图像。同时提出改进的YOLOv5s坩埚... 目前石英坩埚缺陷主要使用人工目检,仅靠人工无法完成准确的分类以及全量计数。该文通过使用六自由度机械臂、旋转台搭建一套石英坩埚缺陷检测平台,结合背光源、高速相机等设备获取高清晰度的坩埚缺陷图像。同时提出改进的YOLOv5s坩埚缺陷检测算法,可识别杂质黑点、气泡、白斑等多种类型缺陷。具体而言,该算法首先应用K-均值聚类技术自适应生成最适合坩埚缺陷数据集的锚框;随后增加针对微小缺陷的检测层,以提高对小目标的识别能力;最后引入全维动态卷积(ODConv)和高效通道注意力机制(ECA),优化模型对关键目标区域的关注度,同时保持较低的计算开销。实验结果表明,在自建的石英坩埚缺陷数据集中,提出的改进算法mAPa0.5为98.88%,检测速度达到138帧/s,可达到工业检测要求。 展开更多
关键词 单晶硅 坩埚 缺陷 深度学习 YOLOv5s 小目标检测
在线阅读 下载PDF
FFS-YOLO:特征指导与融合的车辆目标检测算法
18
作者 王坤 黄雨歆 《中国惯性技术学报》 北大核心 2025年第9期871-878,891,共9页
为提升交通场景下对小目标和遮挡目标的检测精度,在YOLOv8的基础上提出一种特征指导与融合的车辆目标检测算法FFS-YOLO。首先,设计特征指导模块(FGM),利用并行结构从宽度和高度解耦关键信息,指导深层语义特征。然后构造特征融合模块(FF... 为提升交通场景下对小目标和遮挡目标的检测精度,在YOLOv8的基础上提出一种特征指导与融合的车辆目标检测算法FFS-YOLO。首先,设计特征指导模块(FGM),利用并行结构从宽度和高度解耦关键信息,指导深层语义特征。然后构造特征融合模块(FFM),通过扩大感受野和整合不同尺度的特征信息,弥补高分辨率特征图在上下文信息表达上的不足,提高交通场景中小目标和遮挡目标的检测精度。最后采用损失函数(SMPDIoU),综合考虑预测框和真实框之间重叠区域和非重叠区域的中心点距离、宽度和高度的偏差,有效解决在重叠度为零时梯度消失的问题。实验结果表明,FFS-YOLO算法在KITTI数据集和SODA10M数据集上的平均精度均值(mAP)分别较YOLOv8提高1.53%和1.06%。 展开更多
关键词 YOLOv8 小目标 遮挡目标 特征指导 特征融合
在线阅读 下载PDF
基于YOLOv8n-Aerolite的轻量化蝴蝶兰种苗目标检测算法
19
作者 翟永杰 田济铭 +3 位作者 陈鹏晖 王家豪 胡东阳 徐大伟 《农业工程学报》 北大核心 2025年第4期220-229,共10页
小型植物组织检测对植物自动化培养产业的发展具有重要意义,为了提升蝴蝶兰种苗夹取点视觉检测效率以及解决现有模型参数量较大,检测速度较慢的问题,该研究提出了一种轻量化目标检测算法YOLOv8n-Aerolite。首先,采用StarNet作为主干网络... 小型植物组织检测对植物自动化培养产业的发展具有重要意义,为了提升蝴蝶兰种苗夹取点视觉检测效率以及解决现有模型参数量较大,检测速度较慢的问题,该研究提出了一种轻量化目标检测算法YOLOv8n-Aerolite。首先,采用StarNet作为主干网络,在此基础上增加嵌入大核可分离卷积的池化层SPPF_LSKA(large-separable-kernel-attention),实现轻量化的同时保证准确率;然后在颈部网络中采用结合StarBlock的C2f_Star模块,提高模型对蝴蝶兰种苗检测的准确率;最后,采用以共享卷积为基础的轻量级检测头Detect_LSCD(lightweight shared convolutional detection head),提升模型对小目标检测的精度和速度。在对蝴蝶兰种苗图像数据集的目标检测试验中,YOLOv8n-Aerolite算法的平均推理速度达到了435.8帧/s,精确度达91.1%,权重文件大小仅为3.1 MB,对于夹取点所在小目标检测精度达91.6%,在种苗夹取试验中成功率为78%,研究结果可为发展小型作物自动化栽培技术提供参考。 展开更多
关键词 深度学习 YOLOv8n 蝴蝶兰种苗 轻量化 检测速度 小目标检测
在线阅读 下载PDF
基于YOLOv7-Tiny的轻量化钢材表面缺陷检测方法
20
作者 赵曙光 易文 陆小辰 《东华大学学报(自然科学版)》 北大核心 2025年第4期194-202,共9页
为实现快速且精准的钢材表面缺陷检测,提出一种基于YOLOv7-Tiny的轻量化检测方法。为优化主干提升检测精度和速度,基于Transformer模块构建轻型TGS-SPPCFSPC结构,替代SPPCSPC。此外,引入Mish激活函数以增强模型的表征能力;引入Slim-Nec... 为实现快速且精准的钢材表面缺陷检测,提出一种基于YOLOv7-Tiny的轻量化检测方法。为优化主干提升检测精度和速度,基于Transformer模块构建轻型TGS-SPPCFSPC结构,替代SPPCSPC。此外,引入Mish激活函数以增强模型的表征能力;引入Slim-Neck作为新的颈部,在保持检测精度的同时,有效地缩减模型规模和计算量。将SPD卷积与SimAM相结合作为新头部,加强对低分辨率小目标的检测能力。在NEU-DET和GC10-DET上的试验结果表明,改进算法在表现上优于数十种先进网络。相比于原始算法,改进算法在NEU-DET上,m_(AP)提升了7%,GFLOPS减少了2.5 G(Giga),参数减少了3 M(Mega),特别是小目标检测效果显著提高。在GC10-DET上,m_(AP)提升了3%,FPS达125。两者试验结果表明,提出的方法在缺陷检测领域表现出色,而且轻量化设计使其更适用于多种场景。 展开更多
关键词 钢材表面缺陷检测 YOLOv7-Tiny TGS-SPPCFSPC 小目标 轻量化
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部