Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo...In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.展开更多
An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical...An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.展开更多
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac...According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.展开更多
针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,...针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,构建多级信息补偿(MIC)模块通过聚合相邻级别的特征对编码阶段下采样后的特征进行信息补偿;随后,引入全局目标响应(GTR)模块联合特征图的全局上下文信息对卷积局部性的限制进行补偿;最后,构建非对称交叉融合(ACF)模块对浅层和深层特征进行融合,以实现目标解码时纹理信息与位置信息的保留,进而完成对红外弱小目标的检测。在公开的NUAA-SIRST(Nanjing University of Aeronautics and Astronautics-Singleframe InfraRed Small Target)和NUDT-SIRST(National University of Defense Technology-Single-frame InfraRed Small Target)混合数据集上训练和测试的实验结果表明,与UIUNet(U-Net in U-Net Network)、LSPM(Local Similarity Pyramid Modules)和DNANet(Dense Nested Attention Network)等方法相比,所提方法在交并比(IoU)上分别提高了9.2、8.9和5.5个百分点,在F1分数(F1-Score)上分别提高了6.0、5.4和3.1个百分点。以上表明所提方法对红外复杂背景图像中的弱小目标可以实现准确检测和有效分割。展开更多
为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三...为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。展开更多
低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依...低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依赖经验预先定义秩:若秩估计过大或过小,会导致漏检或虚警。而且,不同场景中秩的大小不一样,限制了实际应用。为了解决这一问题,本文采用非凸秩接近范数约束低秩塔克分解的潜在因子,无需手动设置秩,从而显著提升了算法在不同场景中的鲁棒性。进一步地,设计了基于对称高斯-赛德尔的交替方向乘子法(symmetric GaussSeidel based alternating direction method of multipliers algorithm,sGSADMM)来求解所提模型。与现有基于交替方向乘子法相比,sGSADMM算法通过利用更多结构信息,实现了更高的求解精度。大量实验表明,所提方法在检测性能和背景抑制等方面均优于现有的先进算法。展开更多
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金National Natural Science Foundation of China(61774120)
文摘In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.
基金Sponsored by China Postdoctoral Science Foundation (20060400400)
文摘An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively.
基金supported by the National Key Research and Development Program of China(2016YFB0500901)the Natural Science Foundation of Shanghai(18ZR1437200)the Satellite Mapping Technology and Application National Key Laboratory of Geographical Information Bureau(KLSMTA-201709)
文摘According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.
文摘针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,构建多级信息补偿(MIC)模块通过聚合相邻级别的特征对编码阶段下采样后的特征进行信息补偿;随后,引入全局目标响应(GTR)模块联合特征图的全局上下文信息对卷积局部性的限制进行补偿;最后,构建非对称交叉融合(ACF)模块对浅层和深层特征进行融合,以实现目标解码时纹理信息与位置信息的保留,进而完成对红外弱小目标的检测。在公开的NUAA-SIRST(Nanjing University of Aeronautics and Astronautics-Singleframe InfraRed Small Target)和NUDT-SIRST(National University of Defense Technology-Single-frame InfraRed Small Target)混合数据集上训练和测试的实验结果表明,与UIUNet(U-Net in U-Net Network)、LSPM(Local Similarity Pyramid Modules)和DNANet(Dense Nested Attention Network)等方法相比,所提方法在交并比(IoU)上分别提高了9.2、8.9和5.5个百分点,在F1分数(F1-Score)上分别提高了6.0、5.4和3.1个百分点。以上表明所提方法对红外复杂背景图像中的弱小目标可以实现准确检测和有效分割。
文摘为解决现有深度学习网络结构对红外弱小目标的识别针对性不足问题,提出了一种基于改进Yolov8的红外弱小目标识别算法(Yolov8n based on UniRepLK Block and Triplet Attention,UT-Yolov8)。该算法通过特征融合网络输出端的检测头引入三重注意力机制,为特征融合网络内部添加新的小目标检测层、检测头,以及在特征提取网络的空间池化金字塔内结合大内核卷积,针对红外弱小目标的成像特性进行改进。算法在真实红外图像数据上进行验证,实验结果表明,UT-Yolov8算法在保持高检测速度的同时,有效提高了网络对于红外弱小目标识别精度,平均精度均值mAP@0.5达到了95.9%。
文摘低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但其需依赖经验预先定义秩:若秩估计过大或过小,会导致漏检或虚警。而且,不同场景中秩的大小不一样,限制了实际应用。为了解决这一问题,本文采用非凸秩接近范数约束低秩塔克分解的潜在因子,无需手动设置秩,从而显著提升了算法在不同场景中的鲁棒性。进一步地,设计了基于对称高斯-赛德尔的交替方向乘子法(symmetric GaussSeidel based alternating direction method of multipliers algorithm,sGSADMM)来求解所提模型。与现有基于交替方向乘子法相比,sGSADMM算法通过利用更多结构信息,实现了更高的求解精度。大量实验表明,所提方法在检测性能和背景抑制等方面均优于现有的先进算法。