A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The varia...A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.展开更多
基金Supported by the National Ministry Innovation Program of China(VTDP 3103)
文摘A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.