为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量...为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量;然后利用自适应扰动因子更新个体位置以扩大算法的寻优范围;最后,基于种群内个体差异引入柯西高斯突变策略,以解决算法易陷入局部最优的难题且有效提高了收敛速度。通过在基准测试函数与CEC2021测试函数上进行策略有效性实验,并与其他群智能优化算法对比实验来验证SGJO算法的寻优性能,通过Wilcoxon秩和检验与汽车侧面碰撞优化问题来验证SGJO算法的稳健性和有效性。实验结果表明,多策略强化的金豺优化算法有效增强了算法的寻优能力及收敛速度,与其他算法相比具有一定的优越性。展开更多
文摘为了解决金豺优化算法种群多样性差、收敛速度慢、易陷入局部最优等问题,提出了一种多策略强化的金豺优化算法(strengthening golden jackal optimization,SGJO)。首先,采用混沌精英池策略生成精英种群以增强种群多样性并提高初始解质量;然后利用自适应扰动因子更新个体位置以扩大算法的寻优范围;最后,基于种群内个体差异引入柯西高斯突变策略,以解决算法易陷入局部最优的难题且有效提高了收敛速度。通过在基准测试函数与CEC2021测试函数上进行策略有效性实验,并与其他群智能优化算法对比实验来验证SGJO算法的寻优性能,通过Wilcoxon秩和检验与汽车侧面碰撞优化问题来验证SGJO算法的稳健性和有效性。实验结果表明,多策略强化的金豺优化算法有效增强了算法的寻优能力及收敛速度,与其他算法相比具有一定的优越性。