The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sinte...The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).展开更多
Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be ...Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.展开更多
A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that...A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.展开更多
基金Foundation item: Project(2002AA331090) supported by the Hi-tech Research and Development Program of China Project(06D073) supported by Scientific Research Fund of Education Department of Hunan Province
文摘The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).
基金Project(2008AA030503)supported by the National High Technology Research and Development Program of ChinaProject(51474238)supported by the National Natural Science Foundation of China
文摘Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.
基金Projects(51474238,51334002)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.