期刊文献+
共找到396篇文章
< 1 2 20 >
每页显示 20 50 100
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
1
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型 被引量:1
2
作者 瞿伟 李达 +1 位作者 李久元 边子策 《大地测量与地球动力学》 北大核心 2025年第3期221-230,共10页
在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性... 在对滑坡监测数据粗差进行有效处理及充分顾及滑坡监测数据自身特性的基础上,提出一种结合时序分解与相似分量重组的深度学习滑坡位移组合预测模型。首先,利用孤立森林法对滑坡时序监测数据的显著粗差进行处理,再对其平稳性、自相关性、正态性进行综合分析,确定模型预测中输入特征序列的最佳长度;其次,利用集合经验模态分解(EEMD)方法,将非稳态滑坡监测数据分解为多个平稳时间序列,再结合样本熵与K-means算法将其划分为高频、中频、低频3类时间分量;最后,通过对比不同神经网络模型的预测精度,分别构建适合于3类时间分量的预测模型,再将预测结果相叠加,实现对滑坡位移的高精度预测。实验区典型滑坡体北斗/GNSS监测数据测试表明,本文组合预测模型对含有显著粗差的滑坡监测数据具有较好的适用性,相较于单一及现有组合模型可显著提高滑坡位移预测精度。 展开更多
关键词 滑坡位移预测 集合经验模态分解 样本熵 深度神经网络 时间卷积网络
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
3
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
4
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
5
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(LSTM) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
光纤传感网络混合式入侵行为实时检测研究
6
作者 陆思辰 王福军 《激光杂志》 北大核心 2025年第1期202-207,共6页
混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延... 混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延时,提取可能存在入侵行为的光纤传感信号。通过高阶谱分析、样本熵分析和奇异值分析进一步提取信号特征,构建并利用多层梯度下降法训练多个深度神经网络,将所提取的特征输入至对应深度神经网络中,经由Softmax函数输出混合式入侵行为检测结果,最后采用改进的DS证据理论关联融合各深度神经网络输出的检测结果,实现光纤传感网络混合式入侵行为实时检测。实验结果表明,所提方法入侵行为检测结果更准确、内存占用率和CPU使用率较低。 展开更多
关键词 光纤传感网络 混合式入侵行为 实时检测 深度神经网络 奇异值分解
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
7
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
在线阅读 下载PDF
基于多信息融合的INFO-VMD-CNN的齿轮箱故障诊断方法
8
作者 吴胜利 郑子润 邢文婷 《振动与冲击》 北大核心 2025年第13期309-316,共8页
针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD... 针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)的齿轮故障诊断方法。该方法首先采用熵权法将不同位置的振动传感器信号信息进行融合,利用INFO对VMD算法中参数进行优化,并设计一个复合评价指标作为参数优化的评价标准,使用奇异峭度差分谱的方法对敏感分量进行重构;其次,从重构的信号中提取时域、频域特征并输入到CNN模型中进行分类;最后通过Shap(Shapley additive explanations)值法对模型输入特征的重要性进行排序,分析不同特征组合对模型分类和特定故障识别的影响。在东南大学行星齿轮数据集上进行验证,结果表明,利用所提特征组合进行故障诊断,CNN模型故障诊断准确率为98.24%,高于其他特征组合,为行星齿轮箱的故障诊断提供了一组有效的特征指标。 展开更多
关键词 行星齿轮箱故障诊断 向量加权平均算法(INFO) 奇异峭度差分谱 卷积神经网络(CNN) 评价指标 Shap值法
在线阅读 下载PDF
基于ALIF-VMD二次分解的NGO-CNN-LSTM电力负荷短期组合预测模型 被引量:1
9
作者 张琳 高胜强 +2 位作者 宋煜 卜帅羽 余伟 《科学技术与工程》 北大核心 2025年第11期4583-4597,共15页
针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍... 针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍鹰优化算法(northern goshawk optimization, NGO)优化CNN-LSTM(convolutional neural networks-long short-term memory)的电力负荷组合预测模型,在使用交叉映射收敛方法(convergent cross-mapping, CCM)准确识别电力负荷的关键影响因素的基础上,创新性地联合使用ALIF、基于NGO的VMD和模糊熵(fuzzy entropy, FE)对原始负荷序列进行组合分解和必要的重组;针对分解和重组后生成的模态分量,结合NGO确定的CNN-LSTM模型最优超参数组合,建立预测精度高、训练时间短、收敛速度快的NGO-CNN-LSTM日前电力负荷组合预测模型。与其他基准模型的对比结果表明,该模型具有更好的适应性和预测精度,可为电力系统的安全、可靠、经济运行提供重要的技术支撑。 展开更多
关键词 负荷预测 序列分解与重组 北方苍鹰算法 卷积神经网络-长短期记忆神经网络模型
在线阅读 下载PDF
融合特征下的双流CNN的制动蠕动颤振评价 被引量:1
10
作者 李阳 靳畅 +1 位作者 李天舒 顾鼎元 《振动与冲击》 北大核心 2025年第1期134-142,189,共10页
针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方... 针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方法。一条支路的输入为经过变分模态分解提取的时间序列特征,另一条支路的输入为经过快速傅里叶变换提取的图像特征,将一维时序特征与高维图像特征融合,训练模型进行评分。该方法通过融合不同模态的信息,充分捕捉蠕动颤振的局部波形特征和空间纹理特征。结果表明,融合两种特征的评分模型的八分类准确率达87.13%,验证了特征融合方法在蠕动颤振评价上的有效性。 展开更多
关键词 卷积神经网络(CNN) 融合特征 变分模态分解(VMD) 蠕动颤振
在线阅读 下载PDF
柔性直流配电网中接地故障检测技术研究 被引量:1
11
作者 郑峰 吕佳雯 +1 位作者 林燕贞 梁宁 《电机与控制学报》 北大核心 2025年第4期54-64,共11页
针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方... 针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方法提取特征分量,利用特征模态分量构造识别判据,接着对采样数据进行CNN训练,获取模型最优参数,最后利用仿真平台搭建了一个基于模块化多电平变换器(MMC)的10 kV两端直流配电网结构来验证所提方法的有效性,仿真实验表明利用K-L散度优化变分模态分解对仿真数据进行处理,具有良好的推广能力,且具备对噪声的抗干扰能力,所提出的故障检测方法有效,对于各种故障类型的识别具有较强的灵敏性,能准确识别故障类型。 展开更多
关键词 柔性直流配电网 K-L散度优化 变分模态分解 卷积神经网络 故障检测 模块化多电平变换器
在线阅读 下载PDF
基于小波包分解卷积神经网络的停运输电线路故障识别方法 被引量:1
12
作者 王鑫明 王祥宇 +3 位作者 贾晓卜 张飞飞 李少博 胡永强 《电测与仪表》 北大核心 2025年第1期61-67,共7页
当输电线路处于热备用状态时,停运线路上仍可能发生短路故障,准确地判断停运线路的故障状态能有效地避免合闸到故障线路时对电力系统造成冲击并对故障的排除提供便利,因此有必要对停运输电线路进行故障识别。对于双回输电线路提出一种... 当输电线路处于热备用状态时,停运线路上仍可能发生短路故障,准确地判断停运线路的故障状态能有效地避免合闸到故障线路时对电力系统造成冲击并对故障的排除提供便利,因此有必要对停运输电线路进行故障识别。对于双回输电线路提出一种采用小波包分解生成的频谱图作为卷积神经网络(convolutional neural network,CNN)输入进行特征提取的停运线路故障识别方法。为减少人为提取特征产生的误差,首先对停运输电线路故障时三相电压暂态波形进行测量,采用小波包分解得到三相电压波形时频特性,最终通过CNN提取特征并进行故障分类。为验证该方法的故障识别效果,以河北省3条线路的实际数据为基础,在ATP-EMTP中建立500 kV同塔双回输电线路模型,为模拟现场各因素产生的误差在测得电压波形中加入10 dB高斯白噪声。结果表明,对热备用线路上故障状态识别准确率为99.98%,在一定程度上为停运线路的故障诊断及排除提供了参考。 展开更多
关键词 同塔双回输电线路 感应电压 小波包分解 时频分析 卷积神经网络 故障识别
在线阅读 下载PDF
基于改进蜣螂优化算法和融合注意力机制的风电功率预测 被引量:1
13
作者 张旭东 汪繁荣 《广东电力》 北大核心 2025年第1期32-40,共9页
为进一步提高风电功率的预测精准度,提出使用自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)来对原始数据进行分解,并结合多策略改进蜣螂优化算法(multi-strategy enhan... 为进一步提高风电功率的预测精准度,提出使用自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)来对原始数据进行分解,并结合多策略改进蜣螂优化算法(multi-strategy enhanced dung beetle optimization algorithm,MDBO)来优化融合了卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络的风电预测方法。首先,使用CEEMDAN分解算法对初始风力发电功率进行分解,以降低风电数据的非线性和随机性;之后,在预测模型中引入注意力机制(attention mechanism,AM),对分解得到的各分量分别使用经MDBO算法寻优得到的CNN-BiLSTM-AM模型进行预测;最后,把各子分量的预测值进行叠加聚合得到总的预测值,并采用皮尔逊相关系数计算环境特征对风电功率的相关性,保留相关性强的环境特征以进一步提升预测精度。使用所提CEEMDAN-MDBO-CNN-BiLSTM-AM算法进行风电功率预测,预测结果有着较高的预测精准度,其均方根误差较CNN和BiLSTM单一预测模型分别降低了65.12%和64.00%,相较于CNN-BiLSTM其均方根误差和平均绝对误差分别降低了53.20%和53.98%,其回归系数提升了7.581%。 展开更多
关键词 自适应噪声完全集合经验模态分解 风电功率预测 蜣螂优化算法 双向长短期记忆网络 卷积神经网络
在线阅读 下载PDF
基于多尺度局部与全局特征提取的时间序列预测网络
14
作者 王静 王济昂 +1 位作者 丁建立 李永华 《计算机工程与设计》 北大核心 2025年第6期1734-1741,共8页
为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序... 为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序列的建模,利用多尺度时序分离模块,使用平均池化分离得到时间序列的周期性和趋势性部分;局部与全局特征模块对序列中的局部变化和全局趋势进行建模。实验结果表明,所提算法在4个数据集上的预测效果均优于相关基线算法。 展开更多
关键词 多维时间序列预测 局部与全局特征 多尺度 卷积神经网络 时序分解 特征提取 深度学习
在线阅读 下载PDF
基于EEMD与CNN-BiLSTM的噪声环境下滚动轴承故障诊断方法
15
作者 李军星 徐行 +1 位作者 贾现召 邱明 《轴承》 北大核心 2025年第2期85-92,共8页
针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD... 针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD将噪声环境下的振动信号分解为一系列固有模态函数,降低噪声的影响;在CNN部分的第1层使用大卷积核与多分支结构获得不同的感受野,在每一个分支中随机丢弃一些数据增强模型的抗干扰能力,从而提取到更具泛化能力的多样化特征信息,后续部分使用残差结构,以免网络较深时发生梯度消失的现象,解决深层次网络退化问题;在BiLSTM部分使用2个并行的分支结构,用于增强模型对时序信息的利用,从而提高模型在不同工况和噪声环境下的准确率。使用凯斯西储大学轴承数据集和西安交通大学轴承数据集对所提方法进行验证,并与其他深度学习方法和传统机器学习方法进行对比,结果表明本文方法在多种工况和噪声环境下均取得了优异的故障诊断性能。 展开更多
关键词 滚动轴承 故障诊断 集成经验模态分解 卷积神经网络 双向长短时记忆神经网络
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法
16
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
17
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
18
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于改进容积卡尔曼滤波的含光伏配电网动态状态估计 被引量:1
19
作者 刘灏 王紫薇 毕天姝 《电力系统自动化》 北大核心 2025年第9期157-165,共9页
状态估计可为含分布式光伏配电网的安全稳定运行提供数据支撑。然而,分布式光伏大规模接入加剧了配电网状态量的不确定性,传统的配电网静态状态估计难以快速跟踪状态量的动态变化。文中提出了基于改进容积卡尔曼滤波的含光伏配电网动态... 状态估计可为含分布式光伏配电网的安全稳定运行提供数据支撑。然而,分布式光伏大规模接入加剧了配电网状态量的不确定性,传统的配电网静态状态估计难以快速跟踪状态量的动态变化。文中提出了基于改进容积卡尔曼滤波的含光伏配电网动态状态估计方法。该方法建立了含分布式光伏配电网的动态状态估计模型,将光伏侧电气量作为待估计状态量;提出了基于奇异值分解的自适应容积卡尔曼滤波算法,利用奇异值分解替换Cholesky分解,并实现了自适应滤波以实时修正过程噪声参数,解决了传统容积卡尔曼滤波协方差阵非正定导致的滤波中断或滤波发散问题。仿真结果表明,所提方法在光伏接入系统平稳运行或状态量突变的情况下,均能保证较高的状态估计精度,尤其在光伏出力波动时具有明显优势。 展开更多
关键词 配电网 光伏 动态状态估计 容积卡尔曼滤波 奇异值分解
在线阅读 下载PDF
基于TFG-SVD-1DCNN的液压优先阀智能故障诊断方法
20
作者 何瑶 熊晓燕 +2 位作者 王伟杰 李翔宇 刘会军 《机电工程》 北大核心 2025年第7期1287-1293,共7页
液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能... 液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能故障诊断方法。首先,采用短时傅里叶变换(STFT)的方法分析了包含故障信息的信号,提取了信号在不同时间段内频率成分的详细信息,得到了时频矩阵;然后,使用时频矩阵在频率维度上的特征构造了图结构数据(GSD),获得了边的连接关系和边的权重等信息,再利用这些信息生成了图结构数据的邻接矩阵,充分保留了每个样本的空间特征;最后,采用奇异值分解(SVD)方法对图结构数据的邻接矩阵进行了降维,将降维之后的主要特征输入到一维卷积神经网络(1D-CNN)中进行了故障分类,并利用仿真数据验证了该方法在优先阀故障诊断方面的性能。研究结果表明:对于优先阀正向无法打开或关断以及反向无法打开或关断4种故障类型,采用智能故障诊断方法所得的平均准确率为99.7%。该研究可以为液压阀故障检测提供一种有效的方法。 展开更多
关键词 液压系统 液压阀 流量优先阀 时频图结构数据奇异值分解 一维卷积神经网络 短时傅里叶变换 图结构数据
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部