期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
基于MED和ISSD的滚动轴承故障诊断
1
作者 刘尚坤 范壮壮 +1 位作者 张秀花 孔德刚 《机械设计与制造》 北大核心 2025年第1期136-139,共4页
针对奇异谱分解(SSD)算法中分量个数需要凭经验设定的不足,提出用最小能量差法准确确定分量个数的改进SSD(ISSD)方法,并结合最小熵反褶积(MED)降噪提取噪声背景下的轴承故障特征。首先,对轴承振动信号进行MED降噪预处理;然后,利用ISSD... 针对奇异谱分解(SSD)算法中分量个数需要凭经验设定的不足,提出用最小能量差法准确确定分量个数的改进SSD(ISSD)方法,并结合最小熵反褶积(MED)降噪提取噪声背景下的轴承故障特征。首先,对轴承振动信号进行MED降噪预处理;然后,利用ISSD方法得到能量差最小时的最佳分解分量个数、再用自相关峭度最大原则选出最佳分量;最后对最佳分量进行包络解调分析、诊断故障。实测滚动轴承内外圈振动信号分析结果验证了该方法的有效性。 展开更多
关键词 最小熵反褶积 奇异谱分解 自相关峭度 滚动轴承 故障诊断
在线阅读 下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法 被引量:2
2
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
在线阅读 下载PDF
SSD联合邻域伪标签的无源域旋转机械迁移诊断研究 被引量:1
3
作者 杨汶金 刘韬 +1 位作者 王振亚 王贵勇 《振动与冲击》 EI CSCD 北大核心 2024年第23期329-336,共8页
针对迁移诊断中存在的源域和目标域分布差异导致的负迁移以及过分依赖源域样本带来的数据隐私问题,提出一种利用邻域信息优化伪标签监督训练的无源域自适应(source-free domain adaptation,SFDA)迁移诊断方法以实现在无源域样本情况下... 针对迁移诊断中存在的源域和目标域分布差异导致的负迁移以及过分依赖源域样本带来的数据隐私问题,提出一种利用邻域信息优化伪标签监督训练的无源域自适应(source-free domain adaptation,SFDA)迁移诊断方法以实现在无源域样本情况下的迁移诊断。首先,通过奇异谱分解(singular spectrum decomposition,SSD)方法对数据进行降噪处理,使得样本具有更丰富的故障信息,然后,基于一维卷积神经网络构建特征提取器以提取域不变特征;其次,采用对比学习框架拉近同一类样本特征,利用聚合邻域信息精炼后的伪标签进行自监督学习;最后,基于智能诊断模型完成跨设备变工况下滚动轴承健康状态的识别。通过两个滚动轴承数据集间的跨设备迁移诊断验证所提方法的有效性。试验结果表明:所提方法能够充分挖掘不同设备间故障特征信息,提高无源无监督跨域条件下的迁移诊断精度。 展开更多
关键词 无源域自适应(SFDA) 伪标签 迁移学习 故障诊断 奇异谱分解(ssd)
在线阅读 下载PDF
基于AVMHME和WSVD的风电机组主轴承故障诊断
4
作者 孙少华 卢坤鹏 《机械设计与制造》 北大核心 2025年第5期229-235,241,共8页
针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其... 针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其次利用鳑鮍鱼优化算法对变分多谐波模态提取方法中影响参数进行寻优,使用最优参数下的AVMHME方法对原始信号进行提取得到蕴含丰富故障信息的信号分量。随后通过WSVD方法对所得信号分量进行降噪处理,采用线性峭度表征各子分量故障特征信息,并对含有较多故障特征的降噪信号分量加权重构并对重构信号进行包络分析,从中诊断出微弱的风电机组主轴承故障特征频率成分。仿真信号及现场数据分析结果表明,所研究方法可以有效找出风电机组主轴承的微弱故障特征,实现主轴承故障的准确诊断。 展开更多
关键词 风电机组主轴承 Welch功率谱 变分模态多谐波提取 加权奇异值分解 鳑鮍鱼优化算法
在线阅读 下载PDF
多级降噪联合特征增强的轴承故障诊断 被引量:1
5
作者 廖运虎 纪国宜 《振动与冲击》 北大核心 2025年第8期199-208,共10页
对于强噪声背景下,滚动轴承早期故障特征难以提取的问题,提出以改进奇异值分解(improved singular value decomposition,ISVD)联合改进小波分解的多级降噪为预处理,以参数自适应多点最优最小熵解卷积(multipoint optimal minimum entrop... 对于强噪声背景下,滚动轴承早期故障特征难以提取的问题,提出以改进奇异值分解(improved singular value decomposition,ISVD)联合改进小波分解的多级降噪为预处理,以参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)特征增强为后处理的新方法。先是针对奇异值分解难以选择奇异值的问题,提出一种ISVD降噪方法,避免了奇异值的选取;针对软、硬阈值小波降噪的缺陷,提出一种新的小波降噪方法。针对MOMEDA中多点峭度谱求解周期时易受噪声干扰问题,首先利用多级降噪对信号进行降噪预处理,再利用新的周期指标多点包络峭度谱识别周期。通过仿真以及试验验证了该方法的有效性和优越性。 展开更多
关键词 多级降噪 改进奇异值分解(ISVD) 改进小波分解 多点包络峭度谱 强噪声
在线阅读 下载PDF
奇异谱分解和最大相关峭度解卷积在轴承故障声学诊断中的应用
6
作者 姚容华 周俊 +1 位作者 伍星 刘韬 《振动工程学报》 北大核心 2025年第8期1764-1774,共11页
故障特征成分的有效分离是滚动轴承复合故障诊断的核心,在强噪声及各个故障之间相互干扰耦合的背景下,滚动轴承声学复合故障诊断极具挑战性。本文提出一种优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和参数自适应... 故障特征成分的有效分离是滚动轴承复合故障诊断的核心,在强噪声及各个故障之间相互干扰耦合的背景下,滚动轴承声学复合故障诊断极具挑战性。本文提出一种优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和参数自适应最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)的复合故障声学诊断方法。采用包络峭度作为指标辅助OSSD快速确定最佳分解层数,以克服人工经验确定分解层数的不确定性,将信号分解为多个奇异谱分量。将故障特征频率能量幅值比作为指标自适应选择包含主要故障特征信息的两个奇异谱分量。利用参数自适应MCKD对所选择的最佳分量进行滤波和信号特征增强,通过包络谱分析提取故障特征频率实现故障诊断。通过滚动轴承仿真信号和试验声学信号验证了所提方法的有效性,该研究为旋转机械复合故障诊断提供了一种手段。 展开更多
关键词 复合故障 滚动轴承 奇异谱分解 最大相关峭度解卷积
在线阅读 下载PDF
基于COT-SSD的变转速滚动轴承微弱故障诊断 被引量:6
7
作者 王晓龙 唐贵基 何玉灵 《电力自动化设备》 EI CSCD 北大核心 2019年第5期187-193,共7页
针对背景噪声干扰及转速波动工况下滚动轴承微弱故障识别困难这一问题,提出一种结合计算阶次追踪(COT)和奇异谱分解(SSD)的新型诊断方法。利用COT算法对采集的原始时域信号进行等角度重采样,继而利用SSD算法对重采样角域信号进行处理,... 针对背景噪声干扰及转速波动工况下滚动轴承微弱故障识别困难这一问题,提出一种结合计算阶次追踪(COT)和奇异谱分解(SSD)的新型诊断方法。利用COT算法对采集的原始时域信号进行等角度重采样,继而利用SSD算法对重采样角域信号进行处理,通过自适应构建的轨迹矩阵的奇异值分解重组,将角域信号从高频至低频分解为若干个奇异谱分量,利用融合峭度指标筛选最佳奇异谱分量,选定最佳分量后对其进行进一步的包络解调运算,最终通过分析包络阶次谱中幅值突出的成分来准确判定滚动轴承运行状态。滚动轴承内外圈故障实测信号分析结果表明,所提方法能够有效提取出变速工况下滚动轴承的微弱故障特征信息。 展开更多
关键词 滚动轴承 变转速 微弱故障 计算阶次追踪 奇异谱分解
在线阅读 下载PDF
基于SSD-HT时频阶比跟踪的变转速转子故障诊断 被引量:5
8
作者 唐贵基 庞彬 何玉灵 《推进技术》 EI CAS CSCD 北大核心 2018年第5期1134-1141,共8页
为解决变转速工况下转子故障特征难以提取的问题,提出一种基于SSD-HT时频阶比跟踪的转子故障诊断方法。应用一种新的信号分解方法—奇异谱分解对转子故障振动信号进行分解,得到包含故障特征信息的奇异谱分量。运用希尔伯特变换计算各个... 为解决变转速工况下转子故障特征难以提取的问题,提出一种基于SSD-HT时频阶比跟踪的转子故障诊断方法。应用一种新的信号分解方法—奇异谱分解对转子故障振动信号进行分解,得到包含故障特征信息的奇异谱分量。运用希尔伯特变换计算各个有效奇异谱分量的瞬时频率,获取故障信号的时频分布。根据时频分布中的转频信息对原始振动信号进行阶比跟踪分析,提取直观的阶次特征。仿真分析与实验分析结果表明,在无转速测量装置条件下,所述方法可准确判别变转速工况的转子故障模式,相对于传统分析方法表现出一定的先进性。 展开更多
关键词 奇异谱分解 希尔伯特变换 阶比跟踪 变转速 转子 故障诊断
在线阅读 下载PDF
聚类引导的非同源旋转设备平滑性迁移诊断方法
9
作者 杨汶金 刘韬 +1 位作者 王振亚 王贵勇 《振动与冲击》 北大核心 2025年第15期201-208,共8页
针对迁移学习在工业现场应用中存在的因非同源故障数据域漂移和噪声干扰所导致的负迁移问题,提出一种聚类引导的无监督平滑性迁移诊断方法。首先,利用奇异谱分解(singular spectrum decomposition,SSD)技术对数据进行降噪处理,消除故障... 针对迁移学习在工业现场应用中存在的因非同源故障数据域漂移和噪声干扰所导致的负迁移问题,提出一种聚类引导的无监督平滑性迁移诊断方法。首先,利用奇异谱分解(singular spectrum decomposition,SSD)技术对数据进行降噪处理,消除故障信号中其他频带成分的干扰;然后,基于一维卷积神经网络构建无监督领域对抗迁移网络,并引入平滑性域对抗训练策略,使模型达到平滑最小任务损失并增强目标域上的泛化能力;其次,设计判别性聚类方法以学习域不变特征空间并优化目标域样本判别分类信息,进而提高无监督聚类性能并抑制负迁移;最后,应用该迁移诊断方法完成多组跨设备变工况条件下的滚动轴承健康状态识别。通过多个评价指标综合验证表明,所提方法能够充分弥合源域与目标域间的差异性,提高非同源设备迁移诊断精度和泛化性。 展开更多
关键词 迁移学习 故障诊断 奇异谱分解(ssd) 判别性聚类 领域对抗
在线阅读 下载PDF
基于SSD和Teager能量算子的滚动轴承故障诊断方法 被引量:3
10
作者 唐贵基 李楠楠 +1 位作者 王晓龙 李琛 《河南理工大学学报(自然科学版)》 CAS 北大核心 2020年第4期82-87,共6页
针对滚动轴承早期故障冲击信号较难提取的问题,提出基于奇异谱分解(singular spectrum decomposition,SSD)和Teager能量算子的滚动轴承故障诊断方法。首先,利用SSD分解振动信号得到一组不同频带分布的奇异谱分量(singular spectrum comp... 针对滚动轴承早期故障冲击信号较难提取的问题,提出基于奇异谱分解(singular spectrum decomposition,SSD)和Teager能量算子的滚动轴承故障诊断方法。首先,利用SSD分解振动信号得到一组不同频带分布的奇异谱分量(singular spectrum component,SSC);其次,根据峭度准则选取最佳SSC分量,利用Teager能量算子计算该分量的瞬时能量信号并对其进行傅里叶分析,从而得到信号的Teager能量谱;最后,根据能量谱图提取故障特征频率。将该方法运用到仿真信号和滚动轴承实测信号中,并和包络谱、EMD及EEMD方法进行对比分析,结果表明,该方法能有效解调故障特征信息,准确识别轴承故障类型,诊断效果更佳。 展开更多
关键词 奇异谱分解 TEAGER能量算子 故障诊断 滚动轴承
在线阅读 下载PDF
鹈鹕算法参数优化VMD联合SVDS的电机轴承故障诊断
11
作者 孙姿姣 周湘贞 李松洋 《机械设计》 北大核心 2025年第4期150-155,共6页
为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF... 为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF)包络熵最小为评价指标,通过POA进行参数优化;利用包络熵最小指标选取最优IMF模态,并对最优模态构建Hankel矩阵进行SVDS分析;通过SVDS确定信号重构阶数完成信号重构,并以Hilbert解调对重构信号进行包络分析。通过轴承仿真信号和实测信号对方法的有效性进行了验证,结果表明:所提方法增强了轴承故障特征频率,更容易实现故障的判别。 展开更多
关键词 变分模态分解 鹈鹕算法 奇异值差分谱 轴承 故障诊断
在线阅读 下载PDF
基于SSD和1.5维谱的滚动轴承故障诊断方法 被引量:1
12
作者 唐贵基 李楠楠 +1 位作者 周翀 李新芳 《轴承》 北大核心 2020年第3期56-60,共5页
针对滚动轴承早期故障信号信噪比低、较难提取的问题,提出了基于奇异谱分解和1.5维谱的滚动轴承故障诊断方法。首先,利用SSD处理振动信号得到一组奇异谱分量;然后,根据峭度准则选取最佳分量并进行包络解调;最后,计算包络信号的1.5维谱... 针对滚动轴承早期故障信号信噪比低、较难提取的问题,提出了基于奇异谱分解和1.5维谱的滚动轴承故障诊断方法。首先,利用SSD处理振动信号得到一组奇异谱分量;然后,根据峭度准则选取最佳分量并进行包络解调;最后,计算包络信号的1.5维谱并分析谱图中提取到的故障特征信息,实现故障类型的准确判定。试验结果表明,该算法能够有效提取轴承内、外圈早期微弱故障的特征信息,与单一方法及EMD相比具备更佳的诊断效果。 展开更多
关键词 滚动轴承 故障诊断 奇异谱分解 1.5维谱 峭度
在线阅读 下载PDF
EMD-LSTM模型在山西省肺结核发病率预测中的应用
13
作者 赵瑞青 刘静 +5 位作者 赵执扬 翟梦梦 李美晨 崔宇 李一汀 仇丽霞 《中国卫生统计》 北大核心 2025年第3期334-339,共6页
目的探讨基于经验模态分解(EMD)和奇异谱分析(SSA)的长短时记忆神经网络(LSTM)模型预测山西省肺结核发病率的可行性,为山西省肺结核疫情防控工作提供合理的预测方法。方法收集并整理国家公共卫生科学数据中心2007年1月至2018年12月山西... 目的探讨基于经验模态分解(EMD)和奇异谱分析(SSA)的长短时记忆神经网络(LSTM)模型预测山西省肺结核发病率的可行性,为山西省肺结核疫情防控工作提供合理的预测方法。方法收集并整理国家公共卫生科学数据中心2007年1月至2018年12月山西省肺结核报告发病率月度数据,以2007年1月至2017年12月数据作为训练集分别建立LSTM、SSA-LSTM、EMD-LSTM模型,预测2018年1—12月的肺结核报告月发病率,采用均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)四个指标来评价模型的预测性能。结果EMD-LSTM模型的预测性能最优,在预测肺结核未来一年发病趋势时的MSE、MAE、RMSE、MAPE分别为0.036、0.140、0.189、0.045;相较于LSTM模型预测性能分别提高了66.36%、38.33%、42.38%和41.56%;相较于SSA-LSTM模型分别提高了28.00%、9.68%、15.25%和16.67%。结论与单一LSTM模型相比,EMD-LSTM和SSA-LSTM模型的预测性能均得到有效提升;但EMD-LSTM模型的预测效果优于SSA-LSTM模型。因此EMD-LSTM模型更适合山西省肺结核发病趋势预测,可为肺结核防控政策提供理论依据。 展开更多
关键词 肺结核 长短时记忆神经网络 经验模态分解 奇异谱分析 预测
在线阅读 下载PDF
基于GP-SSD的旋转机械复合故障特征提取方法 被引量:13
14
作者 舒文婷 程军圣 +1 位作者 黄祝庆 卿宏军 《电子测量与仪器学报》 CSCD 北大核心 2018年第5期17-24,共8页
针对旋转机械复合故障振动信号中的非线性、非平稳特征,提出了一种基于GP奇异谱分解(GP-SSD)的故障特征提取方法。奇异谱分解(SSD)是一种新的针对非线性非平稳信号的自适应信号处理方法,但其具有主观选取嵌入维数的缺点。GPSSD方法基于G... 针对旋转机械复合故障振动信号中的非线性、非平稳特征,提出了一种基于GP奇异谱分解(GP-SSD)的故障特征提取方法。奇异谱分解(SSD)是一种新的针对非线性非平稳信号的自适应信号处理方法,但其具有主观选取嵌入维数的缺点。GPSSD方法基于GP算法能根据嵌入维数与关联维数的关系自适应选取嵌入维数的优势,可以自适应的分解出若干具有物理意义的奇异谱分量(SSC),从而克服了SSD主观选取嵌入维数的缺点。仿真信号的分析结果验证了GP-SSD方法的优越性,在此基础上将GP-SSD应用于旋转机械复合故障诊断中,实验数据的分析结果表明该方法能有效提取旋转机械复合故障的特征。 展开更多
关键词 GP算法 奇异谱分解 旋转机械 复合故障诊断 特征提取
在线阅读 下载PDF
基于PAM-SSD-LSTM的短期风速预测 被引量:12
15
作者 赵鑫 陈臣鹏 +1 位作者 毕贵红 陈仕龙 《太阳能学报》 EI CAS CSCD 北大核心 2023年第1期281-288,共8页
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠... 为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。 展开更多
关键词 风速短期预测 PAM聚类 奇异谱分解 LSTM神经网络
在线阅读 下载PDF
基于改进SSD和MOMEDA的滚动轴承复合故障诊断 被引量:2
16
作者 刘尚坤 张伟 +2 位作者 范壮壮 孔德刚 张秀花 《组合机床与自动化加工技术》 北大核心 2022年第6期138-141,145,共5页
针对滚动轴承复合故障特征存在交叉影响又受环境噪声干扰、分离诊断困难问题,提出一种基于改进奇异谱分解(SSD)和多点最优最小熵解卷积调整(MOMEDA)的滚动轴承复合故障分离诊断方法。首先,为了克服SSD分解层数需要凭经验设定而难以选到... 针对滚动轴承复合故障特征存在交叉影响又受环境噪声干扰、分离诊断困难问题,提出一种基于改进奇异谱分解(SSD)和多点最优最小熵解卷积调整(MOMEDA)的滚动轴承复合故障分离诊断方法。首先,为了克服SSD分解层数需要凭经验设定而难以选到最优分量的缺点,提出相关峭度图方式优选复合故障中不同故障各自最优分解层数的改进SSD方法;其次,对选出的各最优分量,利用MOMEDA能够降噪、增强冲击特征的优点,进一步削弱其中残存的交叉及干扰成分;最后,由包络分析诊断出复合故障。实验信号分析结果表明:改进SSD方法能准确确定复合故障中不同故障的各自最优分解层数,经MOMEDA处理后的故障特征更明确、诊断更可靠,实现了轴承复合故障的有效分离和故障类型的准确诊断,为轴承复合故障的分离诊断提供了一条途径。 展开更多
关键词 改进奇异谱分解 相关峭度 多点最优最小熵解卷积调整 滚动轴承 复合故障
在线阅读 下载PDF
基于OSSD-EMOMEDA的轮毂电机轴承故障特征提取方法 被引量:7
17
作者 丁殿勇 薛红涛 刘炳晨 《中国电机工程学报》 EI CSCD 北大核心 2023年第24期9721-9732,共12页
为了解决轮毂电机轴承早期微弱故障特征难以提取的问题,提出一种基于优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和增强多点最优调整最小熵解卷积(enhance multipoint optimal minimum entropy deconvolution adju... 为了解决轮毂电机轴承早期微弱故障特征难以提取的问题,提出一种基于优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和增强多点最优调整最小熵解卷积(enhance multipoint optimal minimum entropy deconvolution adjusted,EMOMEDA)的特征提取方法,以实现故障特征的检测与提取,及时掌握轮毂电机的运行安全。首先,提出由新的时频综合指标(time-frequency composite index,TCI)自适应优化分量个数的OSSD方法,并对原始信号进行前处理,通过包络谱峰值指标选择敏感的奇异谱分量。然后,提出EMOMEDA方法,设计一种改进的波形延拓策略恢复解卷积信号长度,克服MOMEDA算法的边缘效应,并通过二次解卷积运算获得最优解卷积信号。最后,对最优解卷积信号进行包络分析,实现故障特征的增强提取。分别采用仿真和试验信号验证所提方法的可行性,并将其与多种故障特征提取方法进行对比,证明了其优越性。结果表明,所提方法能够有效提取微弱故障特征,在特征增强方面具有可观的优势。 展开更多
关键词 轮毂电机 轴承故障 特征提取 奇异谱分解 多点最优调整最小熵解卷积
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:11
18
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
在线阅读 下载PDF
带残余频偏的软扩频信号伪码序列盲估计
19
作者 张天骐 张慧芝 +1 位作者 罗庆予 方蓉 《系统工程与电子技术》 EI CSCD 北大核心 2024年第10期3586-3593,共8页
针对带残余频偏的软扩频信号伪码序列盲估计难的问题,提出一种奇异值分解(singular value decomposition,SVD)结合全数字锁相环(digital phase locked loop,DPLL)的方法。所提方法首先对待处理信号通过不重叠分段生成数据矩阵,每段信号... 针对带残余频偏的软扩频信号伪码序列盲估计难的问题,提出一种奇异值分解(singular value decomposition,SVD)结合全数字锁相环(digital phase locked loop,DPLL)的方法。所提方法首先对待处理信号通过不重叠分段生成数据矩阵,每段信号长度为一倍伪码周期;然后利用其自相关矩阵的右上角元素估计失步点进行同步,并且在重新计算自相关矩阵后根据较大特征值个数估计进制数;最后通过多次快速SVD算法结合DPLL最终实现伪码序列的盲估计。仿真结果显示,所提方法在低信噪比条件下可以有效估计出带残余频偏的软扩频信号的伪码序列,并且性能优于其他对比方法。 展开更多
关键词 软扩频信号 盲估计 残余频偏 奇异值分解 全数字锁相环
在线阅读 下载PDF
基于SVD-K-means算法的软扩频信号伪码序列盲估计 被引量:5
20
作者 张慧芝 张天骐 +1 位作者 方蓉 罗庆予 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期326-333,共8页
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别... 针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。 展开更多
关键词 软扩频信号 盲估计 奇异值分解 K-MEANS
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部