To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system wi...To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular syste...Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.展开更多
This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that...This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.展开更多
基金the National Natural Science Foundation of China (60574088,60274014).
文摘To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of P. R. China (60504034) Youth Foundation of Heilongjiang Province (QC04A01) Outstanding Youth Foundation of Heilongjiang University (JC200404)
文摘Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.
基金Supported by the Research Fund of Chinese Academy of Sciences (2004-1-4)
文摘This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.