In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an...In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.展开更多
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti...Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.展开更多
This paper deals with the theory and calculation methods for compensation of the gradient in railway tunnels through theoretical analysis, numerical calculation, and statistic regression methods. On the basis of the p...This paper deals with the theory and calculation methods for compensation of the gradient in railway tunnels through theoretical analysis, numerical calculation, and statistic regression methods. On the basis of the principle that the resultant force is zero, the formula of the maximum calculated gradient was derived for the freight and passenger line and high-speed passenger special line. The formula of aerodynamic drag in tunnel is provided using the domestic and foreign relevant experimental investigations, and revised with modem train and engineering parameters. A calculation model of aerodynamic drag when the train goes through a single-tracked tunnel was built. Finally, the concept of maximum calculated gradient was adopted to revise the formula for compensation of the gradient in railway tunnels.展开更多
Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing syst...Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.展开更多
The aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle,track,and tunnel.The vehicle–track coupled system is established in light of vehicle–track ...The aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle,track,and tunnel.The vehicle–track coupled system is established in light of vehicle–track coupled dynamics theory.The physical characteristics and mechanical behavior of tunnel segments and rings are modeled by the finite element method,while the soil layers of the vehicle–track–tunnel(VTT)system are modeled as an assemblage of 3-D mapping infinite elements by satisfying the boundary conditions at the infinite area.With novelty,the tunnel components,such as rings and segments,have been coupled to the vehicle–track systems using a matrix coupling method for finite elements.The responses of sub-systems included in the VTT interaction are obtained simultaneously to guarantee the solution accuracy.To relieve the computer storage and save the CPU time for the large-scale VTT dynamics system with high degrees of freedoms,a cyclic calculation method is introduced.Apart from model validations,the necessity of considering the tunnel substructures such as rings and segments is demonstrated.In addition,the maximum number of elements in the tunnel segment is confirmed by numerical simulations.展开更多
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo...Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.展开更多
基金partially supported by Nation Science Foundation of China (61661025, 61661026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022)
文摘In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.
文摘Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.
文摘This paper deals with the theory and calculation methods for compensation of the gradient in railway tunnels through theoretical analysis, numerical calculation, and statistic regression methods. On the basis of the principle that the resultant force is zero, the formula of the maximum calculated gradient was derived for the freight and passenger line and high-speed passenger special line. The formula of aerodynamic drag in tunnel is provided using the domestic and foreign relevant experimental investigations, and revised with modem train and engineering parameters. A calculation model of aerodynamic drag when the train goes through a single-tracked tunnel was built. Finally, the concept of maximum calculated gradient was adopted to revise the formula for compensation of the gradient in railway tunnels.
基金supported by the National Natural Science Foundation of China(62001519)the State Key Laboratory of Advanced Rail Autonomous Operation(RCS2022ZZ004).
文摘Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.52008404,11790283,and 51735012).
文摘The aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle,track,and tunnel.The vehicle–track coupled system is established in light of vehicle–track coupled dynamics theory.The physical characteristics and mechanical behavior of tunnel segments and rings are modeled by the finite element method,while the soil layers of the vehicle–track–tunnel(VTT)system are modeled as an assemblage of 3-D mapping infinite elements by satisfying the boundary conditions at the infinite area.With novelty,the tunnel components,such as rings and segments,have been coupled to the vehicle–track systems using a matrix coupling method for finite elements.The responses of sub-systems included in the VTT interaction are obtained simultaneously to guarantee the solution accuracy.To relieve the computer storage and save the CPU time for the large-scale VTT dynamics system with high degrees of freedoms,a cyclic calculation method is introduced.Apart from model validations,the necessity of considering the tunnel substructures such as rings and segments is demonstrated.In addition,the maximum number of elements in the tunnel segment is confirmed by numerical simulations.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52008404)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.