期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
基于层叠式指针网络的供需事件抽取模型
1
作者 白宇 宁培强 +1 位作者 张桂平 王凌云 《中文信息学报》 北大核心 2025年第10期109-121,共13页
供需事件抽取任务旨在从非结构化文本中识别与供需活动相关的事件信息并以结构化的形式呈现出来。该文将供需事件抽取任务划分为触发词抽取、元素抽取两个子任务并对其分别建模,提出了一种层叠式指针网络管道模型。利用触发词文字信息... 供需事件抽取任务旨在从非结构化文本中识别与供需活动相关的事件信息并以结构化的形式呈现出来。该文将供需事件抽取任务划分为触发词抽取、元素抽取两个子任务并对其分别建模,提出了一种层叠式指针网络管道模型。利用触发词文字信息、触发词位置信息、触发词标记信息建立两个子任务之间的有效特征连接,并通过堆叠多层指针网络、级联解码解决了供需事件抽取中普遍存在的元素跨度较长、多事件共现、元素重叠嵌套等问题。在供需事件数据集上的实验结果显示,该文提出的模型在触发词抽取任务和元素抽取任务上的F 1值分别达到95.32%和83.53%,总体F 1值达到86.91%。 展开更多
关键词 事件抽取 供需事件 指针网络 管道模型 特征连接
在线阅读 下载PDF
融入实体翻译的汉越神经机器翻译模型
2
作者 高盛祥 侯哲 +1 位作者 余正涛 赖华 《计算机应用》 北大核心 2025年第1期69-74,共6页
在汉越低资源翻译任务中,句子中的实体词准确翻译是一大难点。针对实体词在训练语料中出现的频率较低,模型无法构建双语实体词之间的映射关系等问题,构建一种融入实体翻译的汉越神经机器翻译模型。首先,通过汉越实体双语词典预先获取源... 在汉越低资源翻译任务中,句子中的实体词准确翻译是一大难点。针对实体词在训练语料中出现的频率较低,模型无法构建双语实体词之间的映射关系等问题,构建一种融入实体翻译的汉越神经机器翻译模型。首先,通过汉越实体双语词典预先获取源句中实体词的翻译结果;其次,将结果拼接在源句末端作为模型的输入,同时在编码端引入“约束提示信息”增强表征;最后,在解码端融入指针网络机制,以确保模型能复制输出源端句的词汇。实验结果表明,该模型相较于跨语言模型XLM-R(Cross-lingual Language Model-RoBERTa)的双语评估替补(BLEU)值在汉越方向提升了1.37,越汉方向提升了0.21,时间性能上相较于Transformer该模型在汉越方向和越汉方向分别缩短3.19%和3.50%,可有效地提升句子中实体词翻译的综合性能。 展开更多
关键词 汉越神经机器翻译 实体翻译 双语词典 指针网络 低资源
在线阅读 下载PDF
基于深度学习的指针式仪表自动读数与读数校正方法
3
作者 朱均超 张明惠 +2 位作者 韩芳芳 王玉军 宋思源 《仪表技术与传感器》 北大核心 2025年第7期50-56,共7页
为了实现不同量程指针式仪表的自动精准读数,文中提出了一种基于深度学习的指针式仪表自动读数与读数校正的方法。针对不同量程指针式仪表的自动读数,首先,采用YOLOv5模型和U-Net模型进行仪表的检测及指针与刻度线信息的分割;随后利用PP... 为了实现不同量程指针式仪表的自动精准读数,文中提出了一种基于深度学习的指针式仪表自动读数与读数校正的方法。针对不同量程指针式仪表的自动读数,首先,采用YOLOv5模型和U-Net模型进行仪表的检测及指针与刻度线信息的分割;随后利用PP-OCRv3模型读取量程信息,实现对不同量程的仪表信息提取;最后将读取的量程信息代入夹角占比公式计算出仪表读数。针对倾斜仪表读数不准确的问题,构建BP神经网络拟合出检测读数与实际读数的非线性映射关系,实现对不同倾斜角度的指针式仪表检测读数的校正。实验表明:该方法能够得出不同量程的精准读数,平均绝对百分比误差MAPE为2.6845%。 展开更多
关键词 指针式仪表 深度学习 BP神经网络 读数校正 自动读数 OCR模型
在线阅读 下载PDF
融合知识和语义信息的双编码器自动摘要模型 被引量:1
4
作者 贾莉 马廷淮 +1 位作者 桑晨扬 潘倩 《计算机工程与应用》 北大核心 2025年第7期213-221,共9页
为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating kn... 为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。 展开更多
关键词 知识图谱编码器 图注意力机制 指针网络 增强训练 自动摘要
在线阅读 下载PDF
融合与高效全局指针网络的电力变压器缺陷文本实体识别方法
5
作者 林蔚青 郑垂锭 +4 位作者 陈静 江灏 肖洒 王铭海 缪希仁 《电网技术》 北大核心 2025年第11期4876-4887,共12页
电力变压器缺陷文本蕴含大量与设备可靠性密切相关的信息,可为变压器的智能化运维及寿命周期管理提供重要支撑。依托基于Transformer的双向编码器表示(bidirectional encoder representation from transformers,BERT)模型,文章提出一种... 电力变压器缺陷文本蕴含大量与设备可靠性密切相关的信息,可为变压器的智能化运维及寿命周期管理提供重要支撑。依托基于Transformer的双向编码器表示(bidirectional encoder representation from transformers,BERT)模型,文章提出一种融合乱序语言模型预训练BERT(pre-training BERT with permuted language model,PERT)与高效全局指针(efficient global pointer,EGP)网络的电力变压器缺陷文本实体识别方法。首先,在大规模中文语料库上利用乱序语言模型进行预训练以形成PERT模型。其次,PERT作为语义编码层,以深入挖掘实体内部的语义依赖关系,并捕捉复杂文本中的语言特征;EGP作为信息解码层,专注于精确定位关键信息并提取实体在缺陷文本中的分布特征,进而准确识别缺陷实体。最后,运用PERT-EGP模型识别缺陷文本中包含的缺陷设备、缺陷部件、缺陷部位、缺陷现象和缺陷程度5类实体。算例结果表明,相较于现有方法,该方法不仅在成分复杂的复合实体和长文本上效果提升显著,而且大幅缩短模型训练时间,具有更好的文本识别性能。 展开更多
关键词 缺陷文本 变压器 实体识别 乱序语言模型 高效全局指针网络
在线阅读 下载PDF
基于SCANet的雨天指针式仪表读数识别
6
作者 张淑敏 吐松江·卡日 +2 位作者 张紫薇 刘煜博 马小晶 《计算机工程与设计》 北大核心 2025年第6期1810-1817,共8页
针对雨天环境下指针式仪表图像识别精度差的问题,提出一种基于SCANet(spatial and channel attention network)的雨天环境下指针式仪表示数读取算法。SCANet在SPANet(spatial attentive network, SPANet)网络的基础上引入多尺度平滑扩... 针对雨天环境下指针式仪表图像识别精度差的问题,提出一种基于SCANet(spatial and channel attention network)的雨天环境下指针式仪表示数读取算法。SCANet在SPANet(spatial attentive network, SPANet)网络的基础上引入多尺度平滑扩张卷积模块,提取图像中不同形状和方向的雨纹特征;采用卷积块注意模块替换SPANet中的空间注意力机制,实现空间和通道的双维度特征提取;整合各阶段输出结果,利用门控网络进行通道调整得到无雨图像。去雨后的仪表图像送入仪表识别网络获取仪表示数。实验结果表明,指针式仪表识别的精确率、召回率、平均精度均值分别增加了5.5%、11.5%、12.8%。 展开更多
关键词 指针式仪表 读数识别 图片去雨 多尺度平滑扩张卷积 空间注意力网络 门控网络 空间和通道注意力网络
在线阅读 下载PDF
基于全局指针限定窗口的中文医学实体识别
7
作者 仇家康 张卫山 +2 位作者 陈涛 张宝宇 朱宜昌 《计算机工程与设计》 北大核心 2025年第9期2586-2591,共6页
针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减... 针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减少长冗余负样本对模型训练的干扰。为降低模型对样本顺序的敏感性,采用最优自蒸馏策略,使模型学习到更高质量的知识和特征表示。实验结果表明,该模型在4个公开数据集上的性能均显著高于基线模型。 展开更多
关键词 实体识别 中文医学 模型蒸馏 文本挖掘 全局指针 神经网络 深度学习
在线阅读 下载PDF
基于提示学习的ERNIE-BiLSTM-PN通用信息抽取方法研究 被引量:1
8
作者 刘万里 雍新有 +3 位作者 曹开臣 陈俞舟 刘禄波 蔡世民 《电子科技大学学报》 北大核心 2025年第3期411-423,共13页
随着大数据时代的到来,信息抽取已成为自然语言处理领域的重要研究方向。信息抽取涉及多项任务,包括命名实体识别、关系抽取和事件抽取等,每项任务通常需要依靠专用模型来应对其特定的挑战。该文提出一种基于提示学习的ERNIE-BiLSTM-PN... 随着大数据时代的到来,信息抽取已成为自然语言处理领域的重要研究方向。信息抽取涉及多项任务,包括命名实体识别、关系抽取和事件抽取等,每项任务通常需要依靠专用模型来应对其特定的挑战。该文提出一种基于提示学习的ERNIE-BiLSTM-PN通用信息抽取方法(EBP-UIE),结合预训练语言模型(ERNIE)、双向长短期记忆网络(BiLSTM)和指针网络(PN),旨在通过一个统一的框架解决信息抽取任务的复杂性,并实现跨任务知识的共享。ERNIE优化了对文本的深层理解和上下文分析,BiLSTM的应用加强了对序列特征的捕捉及长距离依赖关系的解析,PN则提高了对文本中信息元素起止位置的精确标定,提示学习机制灵活实现多个信息抽取任务的统一建模。实验结果显示:在命名实体识别任务,EBP-UIE在MSRA和PeopleDaily数据集上的F1分数比UIE模型分别高出7.12%和0.53%;在关系抽取任务,EBP-UIE在DuIE数据集上的F1分数超过UIE模型6.84%;对于事件抽取任务,EBP-UIE在DuEE数据集上的触发词和论元抽取F1分数分别比UIE模型高出4.49%和0.95%。 展开更多
关键词 通用信息抽取 深度学习 指针网络 提示学习
在线阅读 下载PDF
基于指针网络架构的多星协同成像任务规划方法
9
作者 朱运豆 孙海权 胡笑旋 《系统工程与电子技术》 北大核心 2025年第7期2246-2255,共10页
随着卫星资源数量增加,用户成像需求也在急剧扩大,亟需加强多星协同成像任务规划研究,提升卫星服务能力。本文基于深度强化学习对多星协同成像任务规划问题开展研究。首先,在满足任务需求、卫星能力、时空约束基础上,建立多星协同成像... 随着卫星资源数量增加,用户成像需求也在急剧扩大,亟需加强多星协同成像任务规划研究,提升卫星服务能力。本文基于深度强化学习对多星协同成像任务规划问题开展研究。首先,在满足任务需求、卫星能力、时空约束基础上,建立多星协同成像任务规划数学模型。然后,设计一种基于指针网络的卫星任务规划算法,利用指针网络机制对输入序列进行优化选择,并通过Mask向量表征各类约束。最后,仿真结果表明算法获得的平均任务收益比传统启发式算法和指针网络模型至少提高1.71%,对于不同任务规模实例训练完成的算法,其平均任务收益差最大不超过0.28%,证明了算法的有效性和适用性。 展开更多
关键词 多星协同成像 任务规划 深度强化学习 指针网络
在线阅读 下载PDF
基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法 被引量:2
10
作者 李斌 林民 +3 位作者 斯日古楞 高颖杰 王玉荣 张树钧 《计算机应用》 北大核心 2025年第1期75-81,共7页
基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取... 基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。 展开更多
关键词 实体关系联合抽取 全局指针网络 提示学习 预训练语言模型 中文古籍
在线阅读 下载PDF
面向卫星车载MEC网络的协同计算卸载方法
11
作者 赵季红 臧若雨 刘振 《计算机工程》 北大核心 2025年第9期49-58,共10页
车联网(IoV)环境中任务的动态性提高了实时计算卸载的复杂性。针对IoV场景中地面网络覆盖受限导致的实时任务难以及时完成的问题,提出一种面向卫星车载移动边缘计算网络(SVMECN)的协同计算卸载方法。首先,构建卫星与地面间的几何关系模... 车联网(IoV)环境中任务的动态性提高了实时计算卸载的复杂性。针对IoV场景中地面网络覆盖受限导致的实时任务难以及时完成的问题,提出一种面向卫星车载移动边缘计算网络(SVMECN)的协同计算卸载方法。首先,构建卫星与地面间的几何关系模型,计算设备与卫星、地面网关与卫星之间的传输速率,并基于该模型计算任务处理时延,模型充分考虑任务的实时性,动态调整卫星移动对地面数据传输的影响,通过卫星与地面网关的协作处理来满足车载应用对时延的要求;其次,提出一种基于指针注意力机制和Actor-Critic(ST-PART)的协同计算卸载算法,根据任务的实时性动态调整任务优先级,按照优先级顺序对任务进行计算卸载,并在不同计算节点之间动态选择和协同处理任务,以最小化任务处理时延。在SVMECN中对所提算法进行仿真,结果显示,与传统的启发式算法相比,所提算法在提高运行效率方面表现突出。实验和分析结果表明,所提算法在满足任务实时性需求的同时能够显著降低任务处理时延,与地面和卫星未协同的算法相比,该算法能够降低2.35%~68.68%的时延成本。 展开更多
关键词 星地协同网络 移动边缘计算 指针注意力 强化学习 计算卸载
在线阅读 下载PDF
基于增量预训练与对抗学习的古籍命名实体识别
12
作者 任乐 张仰森 +2 位作者 李剑龙 孙圆明 刘帅康 《计算机工程与设计》 北大核心 2025年第4期1190-1197,共8页
针对用于古籍命名实体识别古籍语料少、古文信息熵高的问题,构建基于二十四史的古籍文本语料库,并提出一种基于增量预训练和对抗学习的古籍命名实体识别模型(ANER-IPAL)。基于自建的古籍文本数据集,使用NEZHA-TCN模型进行预训练,在嵌入... 针对用于古籍命名实体识别古籍语料少、古文信息熵高的问题,构建基于二十四史的古籍文本语料库,并提出一种基于增量预训练和对抗学习的古籍命名实体识别模型(ANER-IPAL)。基于自建的古籍文本数据集,使用NEZHA-TCN模型进行预训练,在嵌入层融合对抗学习增强模型泛化能力,在解码层引入全局指针网络,将实体识别任务建模为子串提取任务,结合规则进行结果的矫正输出。实验结果表明,所提模型在“古籍命名实体识别2023”数据集(GuNER2023)上的F1值达到了95.34%,相较于基线模型NEZHA-GP提高了4.19%。 展开更多
关键词 二十四史 古籍命名实体识别 增量预训练 时序卷积神经网络 对抗学习 全局指针 子串提取
在线阅读 下载PDF
基于交叉多头注意力的查询式文本摘要生成
13
作者 何东欢 李旸 王素格 《中文信息学报》 北大核心 2025年第7期138-147,共10页
生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建... 生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建立文档、查询和摘要的嵌入表示,再在Transformer架构中,通过交叉的多头注意力机制,建立查询与文档的交互深层语义表示。在此基础上,使用多源指针生成网络,使生成的摘要与文档和查询内容具有语义一致性和表达连贯性。最后,在查询式文本摘要生成数据集Debatepedia和Querysum-data上,与已有方法进行对比实验,实验结果验证了该文摘要生成模型CMAT-PG的有效性。 展开更多
关键词 查询式文本摘要生成 机器阅读理解 交叉多头注意力机制 多源指针生成网络
在线阅读 下载PDF
基于MacBERT与全局指针网络的中文电子病历命名实体识别
14
作者 吴天宇 郭冬冬 +2 位作者 李文桥 李子康 苗琳 《科学技术与工程》 北大核心 2025年第11期4656-4665,共10页
针对现有序列标注方法不能有效解决中文电子病历嵌套实体识别问题,提出一种基于MacBERT与全局指针网络的中文电子病历命名实体识别模型。首先通过MacBERT-large预训练模型将文本转换为结合语境信息的动态向量,然后使用FGM (fast gradien... 针对现有序列标注方法不能有效解决中文电子病历嵌套实体识别问题,提出一种基于MacBERT与全局指针网络的中文电子病历命名实体识别模型。首先通过MacBERT-large预训练模型将文本转换为结合语境信息的动态向量,然后使用FGM (fast gradient method)方法生成对抗样本添加至原有向量并一同输入BiLSTM (bi-directional long short-term memory)网络获取上下文特征,并通过引入注意力机制增强长距离语义特征获取,最后利用全局指针网络模型同时考虑头部和尾部的特征信息进行解码以获得更好的医学嵌套实体预测效果。实验结果表明,本文模型相较于识别效果较好的主流模型全局指针网络模型在CCKS2019以及两个版本的CMeEE中文电子病历数据集上F1分别提高了1.8%、1.37%、1.72%,证明了模型的有效性。 展开更多
关键词 命名实体识别 中文电子病历 全局指针网络 注意力机制
在线阅读 下载PDF
面向高频动态到达的天文卫星机遇目标任务规划方法
15
作者 王旭航 吴海燕 《空间科学学报》 北大核心 2025年第5期1376-1386,共11页
以巡天设备每天将探测到数以万计的变源天体以及对变源天体的观测需求增长为背景,形成了由高频动态到达的机遇目标(ToO)及其后随观测任务组成的长序列任务规划问题.该问题具有观测事件随机性、数据获取高时效性、可选择性多和约束复杂... 以巡天设备每天将探测到数以万计的变源天体以及对变源天体的观测需求增长为背景,形成了由高频动态到达的机遇目标(ToO)及其后随观测任务组成的长序列任务规划问题.该问题具有观测事件随机性、数据获取高时效性、可选择性多和约束复杂的特点,常被视为NP(非确定性多项式)难题,因此获取监督学习的标签数据不易.而针对采用无监督学习的深度强化学习(DRL)方法求解长序列任务规划问题时,卫星作为智能体难以快速收敛至全局最优策略.为此本文借鉴局部注意力(LA)机制的思想对指针网络(PN)进行改进,提出局部注意力指针网络(LA-PN)算法.该算法通过引入时间窗口的方式,使模型专注于对当前决策有重要影响的序列部分,减少了无效探索.通过仿真结果对比分析,验证算法的收益性、实时性和泛化性. 展开更多
关键词 机遇目标 后随观测 任务规划 深度强化学习 局部注意力指针网络
在线阅读 下载PDF
基于Masked-Pointer的多轮对话重写模型 被引量:1
16
作者 杨双涛 符博 +1 位作者 于晨晨 胡长建 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期31-37,共7页
针对多轮会话中的Non-Sentential Utterances(NSUs)问题,结合当前在自然语言处理领域广泛使用的预训练语言模型,将Masked Language Model用于多轮会话NSUs的重写任务,提出Masked Rewriter Model。与基于Seq2Seq的重写模型相比,重写效果... 针对多轮会话中的Non-Sentential Utterances(NSUs)问题,结合当前在自然语言处理领域广泛使用的预训练语言模型,将Masked Language Model用于多轮会话NSUs的重写任务,提出Masked Rewriter Model。与基于Seq2Seq的重写模型相比,重写效果提升明显。根据NSUs重写任务特点,将Masked Language Model与Pointer Network相结合,提出基于Masked-Pointer Rewriter Model的多轮会话重写模型,利用指针网络,提升重写模型对上文信息的关注程度,在BERT Masked Rewriter模型的基础上进一步提升重写效果。 展开更多
关键词 人机交互 预训练语言模型 指针网络 会话重写
在线阅读 下载PDF
基于RoBERTa-Span-Attack的标签指针网络军事命名实体识别 被引量:3
17
作者 罗兵 张显峰 +1 位作者 段立 陈琳 《海军工程大学学报》 CAS 北大核心 2024年第1期76-82,93,共8页
军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事... 军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事命名实体识别;然后,采用了一种基于Span的标签指针网络,同时完成实体的起止位置和类别的识别任务;最后,在模型训练过程中加入对抗训练策略,通过添加一些扰动来生成对抗样本进行训练。在军事领域数据集上的实验结果表明:所提出的军事领域命名实体识别模型相较于BERT-CRF、BERT-Softmax和BERT-Span,在识别准确度上具有更优的效果。 展开更多
关键词 军事命名实体识别 预训练模型 跨度 标签指针网络 对抗训练
在线阅读 下载PDF
基于对比学习与梯度惩罚的实体关系联合抽取模型 被引量:2
18
作者 张强 曾俊玮 陈锐 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1155-1162,共8页
针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池... 针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池中文医疗信息处理评测基准数据集CBLUE2.0上进行实验的结果表明,该模型相比全局指针网络效果更优,能更有效完成复杂数据的实体关系抽取. 展开更多
关键词 实体关系抽取 对比学习 梯度惩罚 RoBERTa预训练模型 全局指针网络
在线阅读 下载PDF
基于连续提示注入与指针网络的农业病害命名实体识别
19
作者 王春山 张宸硕 +3 位作者 吴华瑞 朱华吉 缪祎晟 张立杰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期254-261,共8页
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp... 针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。 展开更多
关键词 农业病害 命名实体识别 连续提示 指针网络 嵌套实体 预训练语言模型
在线阅读 下载PDF
基于深度字词融合的小麦种质信息实体关系联合抽取
20
作者 刘合兵 贾笑笑 +3 位作者 时雷 熊蜀峰 马新明 席磊 《计算机工程与设计》 北大核心 2024年第4期1079-1086,共8页
为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based ... 为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based on deep character and word fusion)。模型编码层通过深度字词融合和上下文语义特征融合,提高密集实体特征识别能力;模型三元组抽取层建立层叠指针网络,提高重叠关系的提取能力。在小麦种质数据集和公开数据集上的一系列对比实验结果表明,WGIE-DCWF模型能够有效提高小麦种质数据实体关系联合抽取效果,同时拥有较好的泛化性,可以为小麦种质信息知识库构建提供技术支撑。 展开更多
关键词 小麦种质信息 字词融合 实体关系抽取 联合抽取 层叠指针网络 实体识别 关系抽取
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部