期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于反卷积和特征融合的SSD小目标检测算法 被引量:14
1
作者 赵文清 周震东 翟永杰 《智能系统学报》 CSCD 北大核心 2020年第2期310-316,共7页
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积... 由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv112的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 展开更多
关键词 小目标检测 反卷积 特征映射 多尺度 特征融合 ssd模型 PASCAL VOC数据集 KITTI数据集
在线阅读 下载PDF
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:15
2
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 ssd MobileNet V2 多通道可选择 深度可分离空洞卷积
在线阅读 下载PDF
用于ADAS实时目标车辆检测的改进SSD算法 被引量:3
3
作者 焦鑫 杨伟东 +2 位作者 刘全周 李占旗 贾鹏飞 《汽车安全与节能学报》 CAS CSCD 2020年第3期337-344,共8页
以实际交通场景中存在重叠小目标车辆为重点,为提升汽车辅助驾驶系统(ADAS)对目标车辆检测的准确性,建立了一种实时目标车辆检测改进算法SSD-P。该算法基于2种方法:1)通过增加小目标特征的提取数量,提出了一种浅层特征图像分辨率重建的... 以实际交通场景中存在重叠小目标车辆为重点,为提升汽车辅助驾驶系统(ADAS)对目标车辆检测的准确性,建立了一种实时目标车辆检测改进算法SSD-P。该算法基于2种方法:1)通过增加小目标特征的提取数量,提出了一种浅层特征图像分辨率重建的方法;2)在非极大抑制中嵌入特征向量进行二次判定方法,以克服单发多盒探测器(SSD)算法对小目标检测精度不高、重叠目标检测能力弱的问题。在PASCAL VOC2012数据集、虚拟交通场景以及实际交通场景中,进行了相关实验验证。结果表明:用该SSD-P算法进行目标车辆检测的平均精度(mAP)为92.4%,比改进前的SSD算法精度提升了4.8%。因此,该改进算法能够改善ADAS的准确性。 展开更多
关键词 汽车辅助驾驶系统(ADAS) 实时车辆检测 单发多盒探测器(ssd)算法 小目标 重叠目标
在线阅读 下载PDF
基于SSD和MobileNet网络的目标检测方法的研究 被引量:27
4
作者 任宇杰 杨剑 +1 位作者 刘方涛 张启尧 《计算机科学与探索》 CSCD 北大核心 2019年第11期1881-1893,共13页
为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平... 为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平台完成了以下一些工作:第一,对低层卷积层的特征图进行区域放大,保留更多的目标特征信息,再对高特征层进行特征提取;第二,在对重叠目标候选区域进行过滤的时候,基于非极大值抑制的方法和思想设置阈值消除冗余的目标候选区域,使得产生的负样本的数目减少,使模型效果逐步趋于稳定;第三,针对目标检测中的预测区域与真实区域在匹配过程中所产生的正负样本进行处理,用于保证模型的稳定性等。基于以上方法研究,使得模型对多目标识别的速度有所加快,鲁棒性更好,准确率更高,同时也适当降低了对硬件配置资源的需求。 展开更多
关键词 多尺度卷积特征 ssd模型 MobileNet 图像目标检测
在线阅读 下载PDF
改进SSD算法的多目标检测 被引量:9
5
作者 马原东 罗子江 +4 位作者 倪照风 徐斌 吴凤娇 孙收余 杨秀璋 《计算机工程与应用》 CSCD 北大核心 2020年第23期23-30,共8页
目标检测作为计算机视觉的核心,在人脸识别、人脸跟踪、大规模场景识别等方面具有广泛应用,其中Onestage领域的SSD算法检测速度和检测性能较为突出,但在环境较为复杂的多目标检测情况下仍会出现误检和漏检。针对这一问题,提出一种改进SS... 目标检测作为计算机视觉的核心,在人脸识别、人脸跟踪、大规模场景识别等方面具有广泛应用,其中Onestage领域的SSD算法检测速度和检测性能较为突出,但在环境较为复杂的多目标检测情况下仍会出现误检和漏检。针对这一问题,提出一种改进SSD算法的多目标检测方法,通过优化SSD内部网络和提高样本适用性的方式改善检测性能;其中,采用修改网络输出和添加抗旋转层ARConv来统一网络结构,降低模型训练时间,减少漏检;并提出P-NMS算法和限制函数优化训练样本,减少误检;在测试阶段,提出单张图片批量测试方法,有效提高模型召回率。实验结果表明,改进后算法具有更强的鲁棒性,并且能有效降低误检、漏检率提升网络性能。 展开更多
关键词 多目标检测 ssd算法优化 抗旋转卷积层(ARConv) 概率非极大值抑制(P-NMS)算法 图片批量测试
在线阅读 下载PDF
基于SSD的小目标特征强化检测算法 被引量:2
6
作者 李炳臻 姜文志 +1 位作者 顾佼佼 刘克 《兵工自动化》 2021年第2期32-37,41,共7页
为解决原始单次多框目标检测(single shot multibox detector,SSD)目标检测算法中对小目标物体检测能力不足的问题,提出一种改进的SSD目标检测算法。采用VGG19作为特征提取网络,在低层特征图部分引入Conv3_3卷积特征图,对Conv4_4进行转... 为解决原始单次多框目标检测(single shot multibox detector,SSD)目标检测算法中对小目标物体检测能力不足的问题,提出一种改进的SSD目标检测算法。采用VGG19作为特征提取网络,在低层特征图部分引入Conv3_3卷积特征图,对Conv4_4进行转置卷积操作,将转置卷积后得到的Conv4_3同Conv3_3的特征图进行特征拼接,实验部分使用VOC数据集对模型进行训练与测试。结果表明:该算法可提高检测能力,目标检测精度能比原始SSD算法提高3.6%,小目标检测效果比改进前也有明显提升。 展开更多
关键词 深度学习 目标检测 卷积神经网络 单次多框目标检测(ssd)模型
在线阅读 下载PDF
基于无人机图像的输电线路部件检测方法研究 被引量:4
7
作者 韩汉贤 罗金满 +3 位作者 刘丽媛 赵善龙 夏成文 赵爱林 《电测与仪表》 北大核心 2024年第5期198-203,共6页
针对无人机电力巡检模式在图像快速检测方面存在的自动化程度和效率低等问题,提出了一种将单级多框预测检测器SSD与特征金字塔网络FPN相结合的输电线路部件检测方法,并对绝缘子故障进行检测。在SSD目标检测的基础上,加入了FPN特征金字... 针对无人机电力巡检模式在图像快速检测方面存在的自动化程度和效率低等问题,提出了一种将单级多框预测检测器SSD与特征金字塔网络FPN相结合的输电线路部件检测方法,并对绝缘子故障进行检测。在SSD目标检测的基础上,加入了FPN特征金字塔结构,局部融合层间特征信息。实验验证了文中所提方法的优越性。实验结果表明,在部件检测中,该方法对大、中、小尺寸目标均具有良好的检测效果,检测精度在90%左右,在绝缘子故障检测中检测精度达到87.4%。为输电线路部件检测技术的发展提供了参考。 展开更多
关键词 无人机 输电线路 单级多框预测检测器 特征金字塔网络 目标检测
在线阅读 下载PDF
多帧背景差与双门限结合的运动目标检测方法 被引量:10
8
作者 王凯 吴敏 +2 位作者 姚辉 杨樊 张翔 《小型微型计算机系统》 CSCD 北大核心 2017年第1期179-183,共5页
为有效解决视频监控场景下运动目标快速、精确检测的问题,提出一种多帧背景差与双门限结合的运动目标检测方法.首先改进Surendra背景模型来获取干净的背景图像,根据灰度差分图像确定的两个门限值进行前景目标检测,低门限阈值用于检测出... 为有效解决视频监控场景下运动目标快速、精确检测的问题,提出一种多帧背景差与双门限结合的运动目标检测方法.首先改进Surendra背景模型来获取干净的背景图像,根据灰度差分图像确定的两个门限值进行前景目标检测,低门限阈值用于检测出比较明显的前景目标(即粗检测),在粗检测的基础上利用高门限阈值以去除粗检测中存在的噪声目标与伪目标(即细检测),最终实现视频监控场景下运动目标的精确检测效果.针对车辆、行人等不同对象的监控场景下进行实验,验证了本文方法不仅能够有效地抑制噪声及伪目标的干扰,而且能够快速、准确地分割出前景目标. 展开更多
关键词 多帧背景差分 双门限 目标检测 Surendra背景模型 灰度差分图像
在线阅读 下载PDF
多帧背景差与Cauchy模型融合的目标检测 被引量:4
9
作者 王凯 吴敏 +2 位作者 姚辉 杨樊 张翔 《光电工程》 CAS CSCD 北大核心 2016年第10期12-17,共6页
为有效解决复杂监视场景中快速、准确检测运动目标,提出一种多帧背景差与柯西(Cauchy)模型融合的目标检测方法。该方法首先借鉴Surendra背景模型的思路进行改进,采用多帧背景差法获取干净的背景图像,然后利用实时的视频图像和当前的背... 为有效解决复杂监视场景中快速、准确检测运动目标,提出一种多帧背景差与柯西(Cauchy)模型融合的目标检测方法。该方法首先借鉴Surendra背景模型的思路进行改进,采用多帧背景差法获取干净的背景图像,然后利用实时的视频图像和当前的背景图像进行绝对差分处理,最后通过Cauchy模型对整幅绝对差分图像上的点进行背景点和前景点判别,实现对复杂监视场景中目标的准确检测。针对车辆、行人等不同对象的监控场景下进行实验,验证了本文方法不仅能够有效地抑制噪声及伪目标的干扰,而且能够快速、准确地分割出前景目标。 展开更多
关键词 多帧背景差 Cauchy模型 目标检测 Surendra背景模型 绝对差分图像
在线阅读 下载PDF
红外弱小目标的单帧捕获 被引量:3
10
作者 王雪梅 黄自力 王德胜 《红外与激光工程》 EI CSCD 北大核心 2006年第z1期99-104,共6页
提出了基于背景预测的单帧检测弱小目标改进算法.该算法采用改进的最大值背景预测算法.为了能同时检测点目标和小目标,预测背景的四个预测窗的位置与目标点之间保持一定的距离,保证预测窗中的像素能准确反映当前像素灰度中的背景灰度信... 提出了基于背景预测的单帧检测弱小目标改进算法.该算法采用改进的最大值背景预测算法.为了能同时检测点目标和小目标,预测背景的四个预测窗的位置与目标点之间保持一定的距离,保证预测窗中的像素能准确反映当前像素灰度中的背景灰度信息.为了保证单帧的较低的虚警率,同时结合多方向多极梯度算法,对背景预测初步检测出来的可能目标点进一步检测,以排除绝大多数的虚假目标.经实验证明,该算法在单帧图像上能很好的检测出弱小目标来,并能满足实时性的要求. 展开更多
关键词 红外弱小目标 单帧检测 背景预测 多方向多级梯度
在线阅读 下载PDF
轻量化煤矸目标检测方法研究 被引量:9
11
作者 杜京义 史志芒 +1 位作者 郝乐 陈瑞 《工矿自动化》 北大核心 2021年第11期119-125,共7页
针对目前基于深度学习的煤矸目标检测方法精度低、实时性差、小目标易漏检等问题,采用轻量化网络、自注意力机制、锚框优化方法对SSD模型进行改进,构建Ghost-SSD模型,进而提出一种轻量化煤矸目标检测方法。Ghost-SSD模型以SSD模型为基... 针对目前基于深度学习的煤矸目标检测方法精度低、实时性差、小目标易漏检等问题,采用轻量化网络、自注意力机制、锚框优化方法对SSD模型进行改进,构建Ghost-SSD模型,进而提出一种轻量化煤矸目标检测方法。Ghost-SSD模型以SSD模型为基础框架,采用GhostNet轻量化特征提取网络代替主体网络层VGG16,以提高煤矸目标检测速度;针对浅层特征图中包含较多背景噪声及语义信息不足问题,引入自注意力模块对浅层特征图进行特征增强,提高对前景区域的关注度,并采用扩张卷积增大浅层特征图的感受野,丰富浅层特征图的语义信息;采用K-means算法对锚框进行聚类,优化锚框尺寸设置,进一步提高煤矸目标检测精度。实验结果表明,基于Ghost-SSD模型进行煤矸目标检测时,平均精度均值较SSD模型提高3.6%,检测速度提高75帧/s,且检测精度与速度均优于Faster-RCNN,Yolov3模型,同时对煤矸小目标具有较好的检测效果。 展开更多
关键词 煤矸分选 煤矸识别 煤矸目标检测 自注意力机制 ssd模型 GhostNet 锚框聚类优化
在线阅读 下载PDF
红外弱小目标检测方法综述 被引量:36
12
作者 韩金辉 魏艳涛 +4 位作者 彭真明 赵骞 陈耀弘 覃尧 李楠 《红外与激光工程》 EI CSCD 北大核心 2022年第4期428-451,共24页
红外弱小目标检测系统可灵活部署在不同的平台中,在红外预警、制导等领域具有重要实用价值。但是,由于复杂场景下存在信噪比低、背景变化剧烈等问题,导致复杂背景下的红外弱小目标检测非常困难,一直是目标探测领域的研究难点和研究热点... 红外弱小目标检测系统可灵活部署在不同的平台中,在红外预警、制导等领域具有重要实用价值。但是,由于复杂场景下存在信噪比低、背景变化剧烈等问题,导致复杂背景下的红外弱小目标检测非常困难,一直是目标探测领域的研究难点和研究热点。根据红外图像数据使用方式的不同,将现有目标检测方法划分为单帧型(含局部信息类与非局部信息类等)和多帧型(含关联校验类与直接求取类等)两大类,并分别进行了简要梳理,分析了不同方法的原理、优势及不足。最后,对本领域的发展趋势做出了预测。该工作既可以帮助初学者快速了解本领域的研究现状和发展趋势,也可作为其他研究者的参考资料。 展开更多
关键词 红外弱小目标 目标检测 单帧型算法 多帧型算法
在线阅读 下载PDF
联合γ-范数和TV-稀疏约束的红外弱小目标检测 被引量:3
13
作者 王孝文 李乔 +1 位作者 薛伟 钟平 《航空兵器》 CSCD 北大核心 2022年第2期30-38,共9页
针对基于传统块图像模型的红外弱小目标检测算法对背景杂波抑制能力不强的问题,提出了一种联合γ-范数和全变分正则化与稀疏约束建模的红外弱小目标检测模型(γ-TSIPI)。首先,将原始红外图像转化为红外块图像,然后,采用γ-范数和全变分... 针对基于传统块图像模型的红外弱小目标检测算法对背景杂波抑制能力不强的问题,提出了一种联合γ-范数和全变分正则化与稀疏约束建模的红外弱小目标检测模型(γ-TSIPI)。首先,将原始红外图像转化为红外块图像,然后,采用γ-范数和全变分正则化对背景块图像进行约束,以更好地减少目标图像中的残留噪声,同时保留图像的边缘信息,避免恢复的背景图像过度光滑。此外,考虑到传统红外块图像模型中的L_(1)范数会过度缩小弱小目标,引入了加权的L_(1)范数,以提升γ-TSIPI模型对目标图像的恢复能力。最后,应用Lagrange乘子法求解γ-TSIPI模型。实验结果表明,所提方法可以更好地抑制背景杂波,降低虚警率,有效地提高了检测性能。 展开更多
关键词 红外 弱小目标检测 红外块图像模型 单帧图像 γ-范数 全变分 稀疏
在线阅读 下载PDF
基于深度学习水果检测的研究与改进 被引量:19
14
作者 黄豪杰 段先华 黄欣辰 《计算机工程与应用》 CSCD 北大核心 2020年第3期127-133,共7页
为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD... 为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD采用多尺度特征融合的方式,从网络不同层抽取不同尺度的特征做预测,但是没有用到足够低层的特征,使得小物体的检测效果较差。通过将经典SSD训练使用的VGG16输入模型替换为ResNet-101,利用特征金字塔网络(FPN)结构将高层特征通过上采样和低层特征做融合。实验表明,改进的SSD300和SSD512水果检测模型的平均检测精度为83.05%和84.24%,经数据增强后精度也有所提升,适合于自然环境下水果的精确检测。 展开更多
关键词 深度学习 目标检测 ssd模型 ResNet-101模型 特征金字塔网络(FPN)
在线阅读 下载PDF
基于残差单发多框检测器模型的交通标志检测与识别 被引量:9
15
作者 张淑芳 朱彤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第5期940-949,共10页
针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度... 针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度分块检测。为了加快检测速度,采取由粗到精的策略,省略对纯背景图像块的预测.利用中等尺度图像块的初检结果缩小目标范围;对目标范围内的其他图像块进行检测;将所有图像块结果映射回原图像,并结合非极大值抑制实现精准识别。实验结果表明,该模型在公开的交通标志数据集Tsinghua-Tencent 100K上取得了94%的总体准确率和95%的总体召回率,对多分辨率图像中不同大小和形态的交通标志都具有良好的检测能力,鲁棒性较强。 展开更多
关键词 交通标志 残差单发多框检测器(ssd)模型 多尺度分块 检测 由粗到精
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部