期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BWO-DBSCAN和CSA-OCRKELM的变电站数据流异常检测方法 被引量:12
1
作者 黄欣 赵敏彤 +2 位作者 郇嘉嘉 吴伟杰 刘嘉文 《广东电力》 2023年第5期39-48,共10页
为了提升变电站数据流检测的实时性与准确性,提出一种使用白鲸优化(beluga whale optimization,BWO)算法优化基于密度的噪声应用空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法,与使用圆圈搜索算法... 为了提升变电站数据流检测的实时性与准确性,提出一种使用白鲸优化(beluga whale optimization,BWO)算法优化基于密度的噪声应用空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法,与使用圆圈搜索算法(circle search algorithm,CSA)优化单分类正则核极限学习机(one class regularized kernel extreme learning machine,OCRKELM)相结合的变电站通信网络数据流异常检测方法。首先,利用BWO-DBSCAN对正常数据流进行聚类,形成样本簇;其次,通过CSA-OCRKELM模型对异常数据流进行实时检测;最后,利用OPNET仿真软件仿真模拟变电站的通信行为并进行对比分析,验证所提方法的有效性。仿真实验结果表明所构建检测模型的检测率约为99%,较其他检测模型具有较高的性能与准确率。 展开更多
关键词 变电站数据流 白鲸优化算法 密度聚类算法 圆圈搜索算法 单分类正则核极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部