Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust opt...The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust optimization model by minimizing the maximum tardiness in the worst case scenario over all jobs. Unlike the traditional stochastic programming model which requires exact distributions, our model only needs the information of due date intervals. The worst case scenario for a given sequence that belongs to a set containing only n scenarios is proved, where n is the number of jobs. Then, the model is simplified and reformulated as an equivalent mixed 0-1 integer linear programming(MILP) problem. To solve the MILP problems efficiently, a heuristic approach is proposed based on a robust dominance rule. The experimental results show that the proposed method has the advantages of robustness and high calculating efficiency, and it is feasible for large-scale problems.展开更多
Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competit...Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competition of machine resources among a group of selfish jobs.Each job has its own performance objective. For the single machine, multi-jobs and non-preemptivescheduling problem, a noncooperative game model is established. Based on the model, many prob-lems about Nash equilibrium solution, such as the existence, quantity, properties of solution space,performance of solution and algorithm are discussed. The results are tested by numerical example.展开更多
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.
基金supported by the National Natural Science Foundation of China(61503211,U1660202)。
文摘The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust optimization model by minimizing the maximum tardiness in the worst case scenario over all jobs. Unlike the traditional stochastic programming model which requires exact distributions, our model only needs the information of due date intervals. The worst case scenario for a given sequence that belongs to a set containing only n scenarios is proved, where n is the number of jobs. Then, the model is simplified and reformulated as an equivalent mixed 0-1 integer linear programming(MILP) problem. To solve the MILP problems efficiently, a heuristic approach is proposed based on a robust dominance rule. The experimental results show that the proposed method has the advantages of robustness and high calculating efficiency, and it is feasible for large-scale problems.
基金Supported by the State Key Program of National Natural Science of China(70931001), the Science Fund for Creative Research Group of National Natural Science Foundation of China (60821063), National Science and Technology Support Plan of China (2006BAH02A09), the Science Fund for Youth Scholars of Ministry of Education of China (200801451053), and the Research Committee and the Department of Industrial and Systems Engineering of Hong Kong Polytechnic University Research Grants (G-U323)
文摘Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competition of machine resources among a group of selfish jobs.Each job has its own performance objective. For the single machine, multi-jobs and non-preemptivescheduling problem, a noncooperative game model is established. Based on the model, many prob-lems about Nash equilibrium solution, such as the existence, quantity, properties of solution space,performance of solution and algorithm are discussed. The results are tested by numerical example.