A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cut...A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.展开更多
In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, th...In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.展开更多
Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can a...Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can automatically get such data to be analyzed and calculated, and then produce real-time simulation control information. Meanwhile, this paper designs relevant simulation components to implement the input and output data, which can guarantee the real-time and universal of the data transmission. Result of the experimental system shows that the real-time performance of the simulation is perfect.展开更多
he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D...he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.展开更多
In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and th...In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.展开更多
A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,...A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.展开更多
Firearm shooting simulators are effective means for training the personnel in armed forces,police and shooting athletes.Shooter-weapon is a complex biomechanical system,therefore the best training quality is achieved ...Firearm shooting simulators are effective means for training the personnel in armed forces,police and shooting athletes.Shooter-weapon is a complex biomechanical system,therefore the best training quality is achieved when the process of a weapon shot is reconstructed in a training simulator and its training weapon mimics the(feeling) perception of the real weapon usage.Dynamics of motions of a handgun simulator held in the hand of a shooter by its grip during the shot is analysed theoretically and experimentally.Breech lock mechanism of the simulator is actuated pneumatically by supplying compressed air in pulses from external pressure source.Analysis of the obtained simulation results and experimentally recorded motion parameters of the training weapon body reveals that application of pneumatic drives is a reasonable option to simulate recoil perception of a pistol.展开更多
In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the ...In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.展开更多
An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts ...An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts are adopted in the implementation of UAWSS according to the essence of simulation and the objective of the system, among which are simulation synthetic environment, signal processing at other simulation nodes, decomposition of underwater sound channel, channel varying law and rules on system and parts evaluation, etc. Applications of these new ideas show that they are effective.展开更多
An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraf...An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraft flight simulation based on MATLAB/Simulink + dSPACE. The platform combines the abundant software and hardware resources of dSPACE simulation platform to simulate the flight attitude of an aircraft in six-DOF ( degree of freedom) motion. Based on the platform, the study was then focused on the flight numerical simulation by taking a loitering aerial vehicle as an example. An aircraft mathematical model was created for a modular design and off-line numerical simulation based on MATLAB/Simulink. Finally, the study was focused on the control system design of the loitering aerial vehicle and conduct of an HITL simulation experiment for the vehicle pitch control. The experiment verifies the system design and control effectiveness. Research results show that the dSPACE simulation system provides a real time good experimental platform to improve the efficiency of study and development of a flight control system.展开更多
The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of...The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of antiaircraft gun system including fire control system, tracking system, shootable zone and calculation of external trajectory is dissertated detailedly. After establishment of simulation database, the forward relevant software design project is presented. The simulation system can be used to evaluate the effect of intercept missile by single gun, and integrate with other simulation system.展开更多
Infrared windshear prediction is one of airborne LLWS remote sensing methods.Before it is applied,the prediction system should be tested on ground to prove it’s feasibility.The LLWS simulation system isused to check ...Infrared windshear prediction is one of airborne LLWS remote sensing methods.Before it is applied,the prediction system should be tested on ground to prove it’s feasibility.The LLWS simulation system isused to check whether the infrared windshear prediction system operate properly.In this paper,according tothe requirement of the LLWS detection and the characteristic of LLWS"source",we will analyze the theoryof the LLWS simulation and give a basic description of the system construction in which we pay more atten-tion to optical simulation and flight simulation.The optical simulation is used to simulate the atmospherc in-frared radiation as a LLWS occurs.The flight simulation is used to simulate the aircraft airspeed,pitch,alti-tude etc..The works presented here are necessary for the LLWS infrared prediction system.展开更多
To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corres...To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.展开更多
As hybrid vehicles introduced the motor, the vehicle structure has a significant change in the power matching. A driver-vehicle-road closed-loop semi-physical simulation system, which makes real driving parts together...As hybrid vehicles introduced the motor, the vehicle structure has a significant change in the power matching. A driver-vehicle-road closed-loop semi-physical simulation system, which makes real driving parts together with the simulation car, will bring convenience to the new car design. We used the computer software to simulate the road with a slope, curve and some other features based on the actual road condition, and analyzed the whole road scene in addition to geometry and physical characteristics. Analyzing and constructing the vehicle dynamics basic template, appropriate changes to the template can obtain the desired vehicle dynamics model with an external device to control the model vehicle. It combined the physical operation system with visual display, which gave us real driving feelings and increased the vehicle design predictive accuracy.展开更多
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p...According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.展开更多
As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy c...As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy consumption are increasingly important.For these purposes,energy storage stations(ESS)are receiving increasing attention.This article discusses the structure,working principle,and control methods of grid-following and grid-forming energy-storage converters,which are currently commonly used.A simulation analysis was conducted to investigate their dynamic response characteristics.The advantages and disadvantages of two types of energy storage power stations are discussed,and a configuration strategy for hybrid ESS is proposed.This paper presents research on and a simulation analysis of grid-forming and grid-following hybrid energy storage systems considering two types of energy storage according to different capacity scenarios.Finally,a comparative analysis between the systems is presented.A simulation model was established using PSD-BPA(Power System Department-Bonneville Power Administration)to analyze the impact of the capacity ratio of grid-following and grid-forming ESS on their dynamic response characteristics in a hybrid ESS.In addition,a development direction for future ESSs is indicated.展开更多
Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The dete...Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.展开更多
The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe develop...The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.展开更多
The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscop...This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems.展开更多
文摘A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.
文摘In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.
文摘Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can automatically get such data to be analyzed and calculated, and then produce real-time simulation control information. Meanwhile, this paper designs relevant simulation components to implement the input and output data, which can guarantee the real-time and universal of the data transmission. Result of the experimental system shows that the real-time performance of the simulation is perfect.
基金supported by the Korea Institute of Marine Science & Technology promotion (KIMST)
文摘he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.18JK0286)Weinan Science and Technology Initiatives Fund program(Program No.2019JCYJ-2-6)+2 种基金Teaching Reform Project of Weinan Normal University(Program No.JG201704)Industry-University-Cooperation Education Project of the Ministry of Education of China(Program No.201702030020,201801082110)Weinan Normal University's Characteristic Discipline Construction Project Electronic Information(Computer Technology)Master's Degree Point Construction Project(18TSXK06)。
文摘In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.
基金Supported by the National Natural Science Foundation of China(51475116)。
文摘A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.
基金This research was funded by the grant from Research Council of Lithuania.Grant No.S-MIP-17-94.
文摘Firearm shooting simulators are effective means for training the personnel in armed forces,police and shooting athletes.Shooter-weapon is a complex biomechanical system,therefore the best training quality is achieved when the process of a weapon shot is reconstructed in a training simulator and its training weapon mimics the(feeling) perception of the real weapon usage.Dynamics of motions of a handgun simulator held in the hand of a shooter by its grip during the shot is analysed theoretically and experimentally.Breech lock mechanism of the simulator is actuated pneumatically by supplying compressed air in pulses from external pressure source.Analysis of the obtained simulation results and experimentally recorded motion parameters of the training weapon body reveals that application of pneumatic drives is a reasonable option to simulate recoil perception of a pistol.
文摘In this paper a 3-D panoramic simulation system of a ship is described which is developed with the MAXSCRIPT language and VC++ as programming tools on the platform of 3Dsmax. The strip theory method is applied to the motion prediction of the mono-hull. The time history solutions of heave and pitch are obtained in the condition of head sea to provide the primary data on panoramic simulation. The simulation system has following functions: 1)digital simulation;2) panoramic simulation; 3) environmental set-up; 4) render preview and output.
文摘An underwater acoustic warfare simulation system (UAWSS) with a structure of high level architecture (HLA) is studied based upon a previous research project. With the experience and lessons learned, some new concepts are adopted in the implementation of UAWSS according to the essence of simulation and the objective of the system, among which are simulation synthetic environment, signal processing at other simulation nodes, decomposition of underwater sound channel, channel varying law and rules on system and parts evaluation, etc. Applications of these new ideas show that they are effective.
基金Sponsored by the Ministerial Level Advanced Research Foundation(A26020060253)
文摘An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraft flight simulation based on MATLAB/Simulink + dSPACE. The platform combines the abundant software and hardware resources of dSPACE simulation platform to simulate the flight attitude of an aircraft in six-DOF ( degree of freedom) motion. Based on the platform, the study was then focused on the flight numerical simulation by taking a loitering aerial vehicle as an example. An aircraft mathematical model was created for a modular design and off-line numerical simulation based on MATLAB/Simulink. Finally, the study was focused on the control system design of the loitering aerial vehicle and conduct of an HITL simulation experiment for the vehicle pitch control. The experiment verifies the system design and control effectiveness. Research results show that the dSPACE simulation system provides a real time good experimental platform to improve the efficiency of study and development of a flight control system.
文摘The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of antiaircraft gun system including fire control system, tracking system, shootable zone and calculation of external trajectory is dissertated detailedly. After establishment of simulation database, the forward relevant software design project is presented. The simulation system can be used to evaluate the effect of intercept missile by single gun, and integrate with other simulation system.
文摘Infrared windshear prediction is one of airborne LLWS remote sensing methods.Before it is applied,the prediction system should be tested on ground to prove it’s feasibility.The LLWS simulation system isused to check whether the infrared windshear prediction system operate properly.In this paper,according tothe requirement of the LLWS detection and the characteristic of LLWS"source",we will analyze the theoryof the LLWS simulation and give a basic description of the system construction in which we pay more atten-tion to optical simulation and flight simulation.The optical simulation is used to simulate the atmospherc in-frared radiation as a LLWS occurs.The flight simulation is used to simulate the aircraft airspeed,pitch,alti-tude etc..The works presented here are necessary for the LLWS infrared prediction system.
基金Funded by National Natural Science Foundation of China under the Grant No.90715036Open Project of Jiangsu Key Laboratory of Structural Engineering (Grant No.ZD1004)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.
基金Funded by the National Natural Science Foundation of China(No.51305475)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2013jcyj A60004)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1500927)
文摘As hybrid vehicles introduced the motor, the vehicle structure has a significant change in the power matching. A driver-vehicle-road closed-loop semi-physical simulation system, which makes real driving parts together with the simulation car, will bring convenience to the new car design. We used the computer software to simulate the road with a slope, curve and some other features based on the actual road condition, and analyzed the whole road scene in addition to geometry and physical characteristics. Analyzing and constructing the vehicle dynamics basic template, appropriate changes to the template can obtain the desired vehicle dynamics model with an external device to control the model vehicle. It combined the physical operation system with visual display, which gave us real driving feelings and increased the vehicle design predictive accuracy.
基金Supported by the Sichuan Province Regional Innovation Cooperation Project(21QYCX0048)Sinopec Science and Technology Department Project(P21048-3)。
文摘According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.
基金supported by the National Key Research and Development Program of China(Gigawatt Hour Level Lithiumion Battery Energy Storage System Technology,NO.2021YFB2400100Integrated and Intelligent Management and Demonstration Application of Gigawatt Hour Level energy storage station,NO.2021YFB2400105).
文摘As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy consumption are increasingly important.For these purposes,energy storage stations(ESS)are receiving increasing attention.This article discusses the structure,working principle,and control methods of grid-following and grid-forming energy-storage converters,which are currently commonly used.A simulation analysis was conducted to investigate their dynamic response characteristics.The advantages and disadvantages of two types of energy storage power stations are discussed,and a configuration strategy for hybrid ESS is proposed.This paper presents research on and a simulation analysis of grid-forming and grid-following hybrid energy storage systems considering two types of energy storage according to different capacity scenarios.Finally,a comparative analysis between the systems is presented.A simulation model was established using PSD-BPA(Power System Department-Bonneville Power Administration)to analyze the impact of the capacity ratio of grid-following and grid-forming ESS on their dynamic response characteristics in a hybrid ESS.In addition,a development direction for future ESSs is indicated.
基金supported by the National Natural Science Foundation of China(Nos.12275120,11875163)Ministry of Science and Technology of China(No.2020YFE0202001)+1 种基金Science and Technology Innovation Program of Hunan Province(No.2022RC1202)Hunan Provincial Natural Science Foundation(No.2021JJ20006).
文摘Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.
基金supported by the National Natural Science Foundation of China (Nos. 42027801, 42072284, and 42372297)the National Key Research and Development Program of China (Nos. 2023YFC3012102 and 2021YFC2902004)the Fundamental Research Funds for the Central Universities (No. 2023ZKPYSH01)
文摘The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%.
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
基金Supported by the National Natural Science Foundation of China(52234003,52222402,52304044).
文摘This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems.