We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainf...We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min,a downfall of 0.90 mm/min,and a rainstorm of 1.86 mm/min.Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity,the slope and surface conditions of cropland.The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff,but has little influence on runoff process at the same sloping degree.Vegetated soil has a smaller phosphorous loss,particularly much less in the particulate form.A heavier rainfall flushes away more phosphorous.Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous.Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could,if not controlled properly,deteriorate the water quality of the Three Gorges Reservoir.展开更多
Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, ...Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, road surfaces and forest grounds in hardwood forests of Lolet and Lat Talar, Iran. Water at intensity of 32.4 mm·h-1 was sprayed from a nozzle onto a square area of 0.48 m2. Runoff was collected by water gauge every 4 min and then runoff and sediment parameters were measured in each plot. Results indicated that on road surfaces, the runoff coefficient was 63.28%. On the cutslopes and fillslopes, the runoff coefficients were 35.14% and 10.23%, respectively. On the forest ground as a control, the runoff coefficient was 5.90%. Runoff volume was 2.73 mL·s^-1 on the road surfaces and 1.52 mL·s^-1 on cutslopes. On fillslopes the runoff volume was 0.44 mL·s^-1 and on the forest ground 0.25 mL·s^-1 The greatest rate of soil loss was found on the cutslope (280.79 g·m-2·h-1). The total soil loss from the cutslopes was two times higher than that from the road surfaces and six times higher than that from the fillslopes. We conclude that cutslopes can be considered the main source of sediments in our study sites, but the function of road surface as a source of runoff generation is more important.展开更多
`The application of sewage sludge(SS)to forested lands may lead to the downward migration of potentially toxic elements(PTEs)through rainfall and thus pose risk to the subsoil and groundwater.Batch column experiments ...`The application of sewage sludge(SS)to forested lands may lead to the downward migration of potentially toxic elements(PTEs)through rainfall and thus pose risk to the subsoil and groundwater.Batch column experiments were conducted using leaching water equivalent to the rainfall amount in the study area over 3 years to investigate changes in concentrations of PTEs,including copper(Cu),zinc(Zn),lead(Pb),cadmium(Cd),and nickel(Ni)in the leachate from the acidic forest soil.Water quality index of leachate,potential ecological risk and human health risk in soil at different leaching stages were compared.Sewage sludge was applied at SS/soil mass ratios of 0:100(controls),15:85(T1),30:70(T2),45:55(T3),60:40(T4),and 75:25(T5).All treatments resulted in increased PTEs concentration in the upper 20 cm soil,T3-T5 increased potential ecological risk from"low"(control)to"moderate"or"considerable".During first year leaching,PTEs concentration increased with increasing SS/soil ratios,but the water quality index of T1-T3 was"excellent"or"good".Pb,Cu,Cd,and Ni in the 20-40 cm soil depth,and Zn in the 60-80 cm soil depth were also enriched,but potential ecological risk was"low".In subsequent leaching,PTEs concentration of leachate gradually returned to the background value and water quality index was"excellent".There were no significant changes in PTEs and ecological risk observed.During the monitoring process,the health risk caused by the migration of PTEs to the human body was always within the acceptable range.Overall,this study provides a reference for the management of risks from the application of SS on forestlands,i.e.,SS/soil ratios<45:55 is recommended on forestlands,and special attention should be given to early leaching risk.In addition,it also provides an important assessment method for the risk of PTEs leaching and migration in forested land application.展开更多
基金the Natural Science Foundation of China (No. 40571093)the National Field Station Fund
文摘We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min,a downfall of 0.90 mm/min,and a rainstorm of 1.86 mm/min.Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity,the slope and surface conditions of cropland.The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff,but has little influence on runoff process at the same sloping degree.Vegetated soil has a smaller phosphorous loss,particularly much less in the particulate form.A heavier rainfall flushes away more phosphorous.Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous.Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could,if not controlled properly,deteriorate the water quality of the Three Gorges Reservoir.
基金supported by a grant from the Basij Organizationfor Research, Science and Technology in Mazan-daran Province, Iran
文摘Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, road surfaces and forest grounds in hardwood forests of Lolet and Lat Talar, Iran. Water at intensity of 32.4 mm·h-1 was sprayed from a nozzle onto a square area of 0.48 m2. Runoff was collected by water gauge every 4 min and then runoff and sediment parameters were measured in each plot. Results indicated that on road surfaces, the runoff coefficient was 63.28%. On the cutslopes and fillslopes, the runoff coefficients were 35.14% and 10.23%, respectively. On the forest ground as a control, the runoff coefficient was 5.90%. Runoff volume was 2.73 mL·s^-1 on the road surfaces and 1.52 mL·s^-1 on cutslopes. On fillslopes the runoff volume was 0.44 mL·s^-1 and on the forest ground 0.25 mL·s^-1 The greatest rate of soil loss was found on the cutslope (280.79 g·m-2·h-1). The total soil loss from the cutslopes was two times higher than that from the road surfaces and six times higher than that from the fillslopes. We conclude that cutslopes can be considered the main source of sediments in our study sites, but the function of road surface as a source of runoff generation is more important.
基金supported by National Natural Science Foundation of China(grant nos.31971629,42007335)Natural Science Foundation of Guangdong Province(2021A1515012157)。
文摘`The application of sewage sludge(SS)to forested lands may lead to the downward migration of potentially toxic elements(PTEs)through rainfall and thus pose risk to the subsoil and groundwater.Batch column experiments were conducted using leaching water equivalent to the rainfall amount in the study area over 3 years to investigate changes in concentrations of PTEs,including copper(Cu),zinc(Zn),lead(Pb),cadmium(Cd),and nickel(Ni)in the leachate from the acidic forest soil.Water quality index of leachate,potential ecological risk and human health risk in soil at different leaching stages were compared.Sewage sludge was applied at SS/soil mass ratios of 0:100(controls),15:85(T1),30:70(T2),45:55(T3),60:40(T4),and 75:25(T5).All treatments resulted in increased PTEs concentration in the upper 20 cm soil,T3-T5 increased potential ecological risk from"low"(control)to"moderate"or"considerable".During first year leaching,PTEs concentration increased with increasing SS/soil ratios,but the water quality index of T1-T3 was"excellent"or"good".Pb,Cu,Cd,and Ni in the 20-40 cm soil depth,and Zn in the 60-80 cm soil depth were also enriched,but potential ecological risk was"low".In subsequent leaching,PTEs concentration of leachate gradually returned to the background value and water quality index was"excellent".There were no significant changes in PTEs and ecological risk observed.During the monitoring process,the health risk caused by the migration of PTEs to the human body was always within the acceptable range.Overall,this study provides a reference for the management of risks from the application of SS on forestlands,i.e.,SS/soil ratios<45:55 is recommended on forestlands,and special attention should be given to early leaching risk.In addition,it also provides an important assessment method for the risk of PTEs leaching and migration in forested land application.