期刊文献+
共找到1,596篇文章
< 1 2 80 >
每页显示 20 50 100
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
1
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(pso)algorithm
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
2
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (pso) fuzzy logic control genetic algorithms
在线阅读 下载PDF
Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power 被引量:3
3
作者 WANG Bing ZHANG Pengfei +2 位作者 HE Yufeng WANG Xiaozhi ZHANG Xianxia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1143-1150,共8页
An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust econom... An economic dispatch problem for power system with wind power is discussed.Using discrete scenario to describe uncertain wind powers,a threshold is given to identify bad scenario set.The bad-scenario-set robust economic dispatch model is established to minimize the total penalties on bad scenarios.A specialized hybrid particle swarm optimization(PSO)algorithm is developed through hybridizing simulated annealing(SA)operators.The SA operators are performed according to a scenario-oriented adaptive search rule in a neighborhood which is constructed based on the unit commitment constraints.Finally,an experiment is conducted.The computational results show that the developed algorithm outperforms the existing algorithms. 展开更多
关键词 wind power robust economic dispatch SCENARIO simulated annealing(SA) particle swarm optimization(pso)
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测 被引量:1
4
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于PSO算法的低比转数冲压离心泵水力性能多目标优化 被引量:1
5
作者 郑水华 赵学燕 +2 位作者 章程 李奕良 柴敏 《农业机械学报》 北大核心 2025年第5期353-360,共8页
针对低比转数冲压离心泵水力性能偏低问题,以CDL1型多级冲压离心泵叶轮为研究对象,结合数值模拟和试验测试方法,对首级叶轮的水力性能进行分析。由于低比转数冲压离心泵叶轮水力性能受多个因素影响,本文使用拉丁超立方方法对首级叶轮各... 针对低比转数冲压离心泵水力性能偏低问题,以CDL1型多级冲压离心泵叶轮为研究对象,结合数值模拟和试验测试方法,对首级叶轮的水力性能进行分析。由于低比转数冲压离心泵叶轮水力性能受多个因素影响,本文使用拉丁超立方方法对首级叶轮各设计变量进行抽样形成样本空间并获得相应性能参数,进而建立Kriging代理模型分析各参数对叶轮水力性能的敏感性,选定叶轮关键影响参数为粒子群算法(PSO)输入,对多参数进行优化设计,在此基础上探究叶轮的水力性能和内流机制。结果表明,优化后的叶轮水力性能优于原始设计,最高效率点效率提升2.8个百分点,单级扬程提高0.4 m。 展开更多
关键词 低比转数冲压泵 水力性能优化 粒子群算法 数值模拟 试验测试
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
6
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
7
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进pso-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于PSO算法的煤矿瓦斯事故致因分析 被引量:1
8
作者 张洽 憨瑞东 陈涛 《中国安全科学学报》 北大核心 2025年第2期104-110,共7页
为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类... 为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类,并使用PSO-频繁模式增长(FP-growth)算法挖掘煤矿瓦斯事故调查报告的关联规则。结果表明:PSO-FP-growth算法相较于PSO-Apriori算法运行速度及关联规则效果更优;根据瓦斯事故风险因素关联规则可视化及高支持度关联因素显示,我国煤矿瓦斯事故发生的主要风险因素是煤矿企业安全监督管理存在缺陷、瓦斯防治技术不到位、员工安全意识淡薄以及现场管理人员管理意识和技术不到位造成的。 展开更多
关键词 粒子群优化(pso)算法 煤矿瓦斯事故 事故致因 关联规则 人因分析与分类系统(HFACS)
在线阅读 下载PDF
基于PSO-PID的无人艇布放回收半主动式防摆系统控制研究 被引量:1
9
作者 李云龙 王生海 +3 位作者 赵明慧 翁晶 邓晨旭 韩广冬 《机床与液压》 北大核心 2025年第6期49-56,共8页
针对高海况下无人艇布放回收作业中,无人艇负载摆动幅度过大的问题,设计一种布置于船用吊机上的半主动式磁流变防摆装置,建立防摆系统动力学模型,同时将粒子群优化算法(PSO)和PID控制器相结合,实现了PID参数的自动最优选定。通过Simulin... 针对高海况下无人艇布放回收作业中,无人艇负载摆动幅度过大的问题,设计一种布置于船用吊机上的半主动式磁流变防摆装置,建立防摆系统动力学模型,同时将粒子群优化算法(PSO)和PID控制器相结合,实现了PID参数的自动最优选定。通过Simulink-Adams联合仿真,结果表明:在设定的3种工作场景下,采用PSO-PID控制器的防摆系统的平均摆动抑制率相比无防摆措施提升80%以上,其能耗相比1.2 A恒定电流至少降低40%,可适应于不同的工作场景,面对突发的复杂激励具有良好的动态性能和能耗控制,证明了防摆系统及其控制策略的有效性。 展开更多
关键词 无人艇布放回收 防摆装置 磁流变阻尼器 粒子群优化算法 水动力仿真
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
10
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
11
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimizationpso
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
12
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
13
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于改进SA-PSO的工业机器人参数辨识和定位精度提升
14
作者 王国荣 杜茂华 +2 位作者 吴智恒 李平 杨志新 《机床与液压》 北大核心 2025年第17期42-50,共9页
针对传统粒子群算法(PSO)在工业机器人标定过程中存在的衰减机制落后、易陷入局部最优导致精度低的问题,提出一种基于改进SA-PSO的工业机器人几何参数辨识和定位精度提升方法。基于D-H模型建立工业机器人误差模型,将几何误差标定问题转... 针对传统粒子群算法(PSO)在工业机器人标定过程中存在的衰减机制落后、易陷入局部最优导致精度低的问题,提出一种基于改进SA-PSO的工业机器人几何参数辨识和定位精度提升方法。基于D-H模型建立工业机器人误差模型,将几何误差标定问题转换为高维非线性方程的寻优求解问题。在参数辨识过程中,结合粒子群算法与模拟退火算法,在跳出局部最优解的基础上,设计正态分布曲线来控制算法惯性权重的变化,并引入控制因子优化粒子的位置更新公式。通过对KUKA KR 6 R900机器人进行仿真与测试实验,将该改进算法与传统PSO、APSO、NDPSO、SA-PSO等算法进行性能对比。结果表明:改进SA-PSO算法能够跳出局部最优解,波动更小,预测精度更高,搜索过程达到较低适应度值时所需迭代步数更少,收敛速度更快;利用改进SA-PSO算法完成机器人参数辨识和标定后,综合位置误差从1.1447 mm降低至0.1731 mm,降低了84.87%,最大误差从1.9686 mm降至0.9959 mm;标定后X、Y、Z轴误差分布更集中,波动更小,表明该算法的辨识精度和适应性更高,具有较大的工程应用价值。 展开更多
关键词 机器人 参数辨识 定位精度 模拟退火算法 改进粒子群优化算法
在线阅读 下载PDF
基于ASAPSO混合算法的双脉冲变轨拦截轨迹优化
15
作者 杨慧婷 王庆辉 《空间控制技术与应用》 北大核心 2025年第1期75-84,共10页
针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在... 针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在沿初始轨道飞行一周内机动追逐目标,将两次脉冲变轨的时刻设为决策变量,将燃料消耗量作为适应度函数,并采用ASAPSO混合算法作为优化策略.其次,为了验证ASAPSO算法的有效性,针对同一模型分别采用了传统粒子群算法(PSO)、模拟退火粒子群算法(SAPSO)以及强化学习粒子群算法(RLPSO)进行优化,对比发现ASAPSO算法在较少的迭代次数内就能快速收敛至全局最优解,极大地减少了处理轨道拦截问题的计算量和时间.该算法结合了PSO的全局搜索能力和SA的局部优化特性,为航天器Lambert双脉冲变轨拦截问题提供了一种更为高效、精确的解决方案. 展开更多
关键词 Lambert变轨拦截 粒子群算法 模拟退火算法 参数自适应
在线阅读 下载PDF
基于TCSPSO算法的机械臂运动时间最优轨迹规划
16
作者 许家伟 李磊 +3 位作者 汪建华 张雅君 覃杰伟 刘旭珍 《现代制造工程》 北大核心 2025年第3期69-76,83,共9页
目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算... 目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算法的机械臂运动时间最优轨迹规划方法。首先,构造5-7-5多项式插值函数,拟合机械臂关节空间中的运动轨迹,以机械臂运动时间最优为目标建立约束优化模型;然后,使用增广拉格朗日乘子法将约束优化问题转化为无约束优化问题,为了避免结果陷入局部最优,采用TCSPSO算法进行求解;最后,在MATLAB软件中进行仿真实验,得到了机械臂的最优运动时间和平滑的运动轨迹。结果表明,该方法可以有效地缩短机械臂的运动时间,保证了机械臂在运动过程中的稳定性。 展开更多
关键词 机械臂 轨迹规划 粒子群优化算法 多项式插值 增广拉格朗日乘子法
在线阅读 下载PDF
基于探地雷达与PSO−BP神经网络的煤岩界面预测研究
17
作者 张和江 张义平 +2 位作者 侯晨锋 王缪斯 周利治 《工矿自动化》 北大核心 2025年第8期80-87,共8页
针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从... 针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从而确定煤岩界面特征参数:煤占比、响应位置振幅、煤响应位置振幅平均值、振幅衰减值、反射波所用双程走时、电磁波波速和煤介电常数;根据选择的特征参数开展介电常数测试和模拟煤岩界面识别实验,获取实测样本数据;采用PSO算法对BP神经网络权值与阈值进行优化,得到最优模型;将煤岩界面特征参数输入PSO−BP神经网络模型,实现煤岩界面预测。实验结果表明:与GA−BP和BP神经网络模型相比,PSO−BP模型的均方误差(MSE)分别下降了22.14%和45.54%,平均绝对百分比误差(MAPE)分别下降了22.22%和46.15%,平均绝对误差(MAE)分别下降了31.58%和55.68%,PSO−BP在预测精度、误差控制能力和数据拟合效果上均具有显著优势,预测煤岩界面位置更贴近实际位置,稳定性更好。 展开更多
关键词 煤岩界面识别 探地雷达 BP神经网络 粒子群优化算法 pso−BP神经网络 特征参数
在线阅读 下载PDF
基于高斯扰动的改进PSO算法在光伏MPPT中的应用
18
作者 刘俞佟 唐宏伟 +2 位作者 李瑶 喻静怡 金翔宇 《农业装备与车辆工程》 2025年第8期61-66,共6页
光伏发电系统在局部阴影条件下易出现功率-电压曲线多峰特性,导致传统最大功率点跟踪(MPPT)算法陷入局部最优。针对传统粒子群优化算法(PSO)存在的早熟收敛与高计算成本问题,提出一种基于高斯扰动的改进PSO控制策略。摒弃传统PSO算法的... 光伏发电系统在局部阴影条件下易出现功率-电压曲线多峰特性,导致传统最大功率点跟踪(MPPT)算法陷入局部最优。针对传统粒子群优化算法(PSO)存在的早熟收敛与高计算成本问题,提出一种基于高斯扰动的改进PSO控制策略。摒弃传统PSO算法的速度项,仅通过粒子位置更新实现优化,以降低计算复杂度;通过引入高斯噪声扰动策略,当个体或全局极值停滞步数超过阈值时,对其施加服从高斯分布的随机扰动,强制粒子跳出局部最优区域,增强算法逃离局部极值的能力,并结合自适应惯性权重提升响应速度。基于MATLAB/Simulink的仿真结果表明,相较于传统PSO算法,所提方法在局部阴影场景下的追踪速度以及精度有显著提升。 展开更多
关键词 粒子群优化算法 高斯扰动 光伏系统 最大功率点跟踪
在线阅读 下载PDF
基于PSO-BP-PID的动力系统动态负载模拟研究
19
作者 彭达 孙晓帮 张华成 《农业装备与车辆工程》 2025年第7期99-105,共7页
为提升汽车动力台架实验中道路行驶动态负载模拟精度,提出PSO算法与BP神经网络PID控制的复合策略用于负载模拟控制。基于MATLAB/Simulink构建电动汽车动力总成及台架系统动力学模型,采用转速与转矩复合控制;通过BP神经网络实时自适应优... 为提升汽车动力台架实验中道路行驶动态负载模拟精度,提出PSO算法与BP神经网络PID控制的复合策略用于负载模拟控制。基于MATLAB/Simulink构建电动汽车动力总成及台架系统动力学模型,采用转速与转矩复合控制;通过BP神经网络实时自适应优化PID参数构建BP-PID控制算法,再引入PSO算法对BP神经网络初始权值和PID参数基准全局寻优,形成PSO-BP-PID控制算法。搭建HIL测试系统验证表明,该策略较传统PID控制显著增强系统稳定性,提升响应速度与模拟精度,为高精度负载模拟提供参考方案。 展开更多
关键词 台架控制 动态负载模拟 BP神经网络 粒子群优化算法
在线阅读 下载PDF
基于GA−BPSO算法的水下航行器艉部结构模态测点优化布置
20
作者 史乃轩 杨雨浓 +2 位作者 秦云龙 余新森 张冠军 《中国舰船研究》 北大核心 2025年第5期160-169,共10页
[目的]针对水下航行器艉部结构振型复杂、模态测试测点多的问题,提出一种基于遗传算法和二进制离散粒子群混合算法(GA-BPSO)的测点优化布置方法。[方法]首先,建立典型艉部结构有限元模型并提取结构参数,构建三维消冗指标和模态置信准则... [目的]针对水下航行器艉部结构振型复杂、模态测试测点多的问题,提出一种基于遗传算法和二进制离散粒子群混合算法(GA-BPSO)的测点优化布置方法。[方法]首先,建立典型艉部结构有限元模型并提取结构参数,构建三维消冗指标和模态置信准则的组合目标函数;然后,基于GA-BPSO算法对艉部结构进行模态测点优化布置;最后,为验证优化方法的有效性,开展艉部结构测点均匀布置和优化布置的模态对比实验。[结果]结果表明,优化后的测点数量由均匀布置方案的840个减少至200个,优化布置方案模态置信矩阵最大非对角元素降低至0.0333,频率误差控制在1%以内,且振型吻合度较高。[结论]所提方法有效兼顾了模态振型的线性独立性和可视化效果,可用于水下艉部结构模态测试。 展开更多
关键词 艉部结构 测点优化布置 遗传算法 粒子群算法 三维消冗模型 声学噪声测量 噪声控制
在线阅读 下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部