Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the...Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-ter...Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.展开更多
This paper presents a method to generate unstructured adaptive meshes with moving boundaries and its application to CFD. Delaunay triangulation criterion in conjunction with the automatic point creation is used to gen...This paper presents a method to generate unstructured adaptive meshes with moving boundaries and its application to CFD. Delaunay triangulation criterion in conjunction with the automatic point creation is used to generate 2 D and 3 D unstructured grids. A local grid regeneration method is proposed to cope with moving boundaries. Numerical examples include the interactions of shock waves with movable bodies and the movement of a projectile within a ram accelerator, illustrating an efficient and robust mesh generation method developed.展开更多
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi...We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.展开更多
A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves...A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.展开更多
The acoustic radiation force on a fluid sphere immersed in water between two boundaries given by a Gaussian beam is theoretically and numerically investigated in this work. Based on the finite series method, the Gauss...The acoustic radiation force on a fluid sphere immersed in water between two boundaries given by a Gaussian beam is theoretically and numerically investigated in this work. Based on the finite series method, the Gaussian beam is expressed in terms of Bessel function and a weighting parameter. The effects of the two boundaries concerned in our study is worked out by the image theory. This work also provides a reference when considering the effects of certain factors such as the radius of the sphere and the distance between the sphere and two boundaries. The contrast with the acoustic radiation force on a fluid sphere near only one boundary is also made in this paper. Our study can offer a theoretical basis for acoustics manipulation, acoustic sensors in the field of biomedical ultrasound and material science.展开更多
By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge,...By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.展开更多
The microstructures of titanium(Ti), an attractive tritium(T) storage material, will affect the evolution process of the retained helium(He). Understanding the diffusion behavior of He at the atomic scale is cru...The microstructures of titanium(Ti), an attractive tritium(T) storage material, will affect the evolution process of the retained helium(He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics(MD) simulation for the bulk hcp-Ti system and the system with grain boundary(GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic(the diffusion coefficient of the [0001] direction is higher than that of the basal plane),as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary(TB) can serve as an effective trapped region for He.The TB accelerates diffusion of He in the direction perpendicular to the twinning direction(TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region.展开更多
This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the fre...This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992-2001).We first prove that this problem has a unique solution defined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R_(0)<1,or the initial infected area h_(0),expanding ability μ and the initial datum S_(0) are all small enough when 1<R_(0)<1+d/μ_(2)+α.Furthermore,we show that if 1<R_(0)<1+d/μ_(2)+α,the disease will spread when h_(0) is large enough or h_(0) is small but μ is large enough.It is expected that the disease will always spread when R_(0)≥1+d/μ_(2)+α which is different from the local model.展开更多
In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss ...In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss and structural degradation. Here, the grain boundaries of perovskite polycrystalline films have been found to act as nanocapillaries for capturing perovskite quantum dots(PQDs), which enable the conformal assemble of PQDs at the top interspace between perovskite grains. The existence of PQDs passivated the surface defects, optimized the interfacial band alignments, and ultimately improved the power conversion efficiency from 19.27% to 22.47% in inverted PSCs. Our findings open up the possibility of selective assembly and structural modulation of the perovskite nanostructures towards efficient and stable PSCs.展开更多
This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, ...This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, from fractal to Wada basin boundaries in which no changes of accessible periodic orbits happen, and from Wada to Wada basin boundaries. In a model of mechanical oscillator, it shows that a Wada basin boundary can be smooth.展开更多
Boron distribution at grain boundaries in hot-deformed nickel is directly characterized by the time-of-flight secondary ion mass spectrometry. The segregations of boron are observed at both the random and twin grain b...Boron distribution at grain boundaries in hot-deformed nickel is directly characterized by the time-of-flight secondary ion mass spectrometry. The segregations of boron are observed at both the random and twin grain boundaries. Two types of segregations at random grain boundaries are observed. The first type of segregation has a high intensity and small width. Its formation is attributed to the incorporating of dislocations into the moving grain boundaries. The second type of segregation arises from the cooling induced segregation at the dislocations associated with the grain boundaries. The segregation at twin boundary is similar to the second type of segregation at random grain boundaries.展开更多
The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures.The finite temperature reduces the ultimate strengths of the graphenes with di...The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures.The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries.More interestingly,at high temperatures,the ultimate strengths of the graphene with the zigzagorientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures,which is determined by inner initial stress in grain boundaries.The results indicate that the finite temperature,especially the high one,has a significant effect on the ultimate strength of graphene with grain boundaries,which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications.展开更多
This paper reports that an atomic scale study of [^-110] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu...This paper reports that an atomic scale study of [^-110] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu. For each metal, the energies of two crystals ideally joined together are unrealistically hlgh due to very short distance between atoms near the grain boundary (GB) plane. A relative slide between grains in the GB plane results in a significaut decrease in GB energy and a minimum value is obtained at specific translation distance. The minimum energy of Cu is much higher than that of Ag and Au, while the minimum energy of Ag is slightly higher than that of Au. For all the three metals, the three lowest energies correspond to identical (111), (113) and (331) boundary successively for two translations considered; from minimization of GB energy, these boundaries should be preferable in [^-110] STGB for noble metals. This is consistent with the experimental results. In addition, the minimum energy increases with increasing reciprocal planar coincidence density ∑, but decreases with increasing relative interplanar distance d/a.展开更多
Migration of He atoms and growth of He bubbles in high angle twist grain boundaries(HAGBs)in tungsten(W)are investigated by atomic simulation method.The energy and free volume(FV)of grain boundary(GB)are affected by t...Migration of He atoms and growth of He bubbles in high angle twist grain boundaries(HAGBs)in tungsten(W)are investigated by atomic simulation method.The energy and free volume(FV)of grain boundary(GB)are affected by the density and structure of dislocation patterns in GB.The migration energy of the He atom between the neighboring trapping sites depends on free volume along the migration path at grain boundary.The region of grain boundary around the He bubble forms an ordered crystal structure when He bubble grows at certain grain boundaries.The He atoms aggregate on the grain boundary plane to form a plate-shape configuration.Furthermore,high grain boundary energy(GBE)results in a large volume of He bubble.Thus,the nucleation and growth of He bubbles in twist grain boundaries depend on the energy of grain boundary,the dislocation patterns and the free volume related migration path on the grain boundary plane.展开更多
The molecular dynamics simulation technique with many-body and semi-empirical potentials (based on the embedded atom method potentials) has been used to calculate the interactions of point defects with (1 1 1), (...The molecular dynamics simulation technique with many-body and semi-empirical potentials (based on the embedded atom method potentials) has been used to calculate the interactions of point defects with (1 1 1), (1 1 3), and (1 2 0) twin boundaries in Au at different temperatures. The interactions of single-, di-, and tri-vacancies (at on- and off-mirror sites) with the twin interfaces at 300 K are calculated. All vacancy clusters are favorable at the on-mirror arrangement near the (1 1 3) twin boundary. Single- and di-vacancies are more favorable at the on-mirror sites near the (1 1 l) twin boundary, while they are favorable at the oft-mirror sites near the (1 2 0) twin boundary. Almost all vacancy clusters energetically prefer to lie in planes closest to the interface rather than away from it, except for tri-vacancies near the (1 2 0) interface at the off-mirror site and for 3.3 and 3.4 vacancy clusters at both sites near the (1 1 1) interface, which are favorable away from the interface. The interaction energy is high at high temperatures.展开更多
The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seam...The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seams, change of spore and pollen abundance, scour surfaces and base conglomerate, change of logging curve and sedimentary facies. How to determine the location of the first flooding surfaces and the maximum flooding surface is the key step to divide the systems tract. There occurred a topographic slope break in the East Fukang Slope when the Jurassic was deposited, and therefore we can recognize the location of the first flooding surface and establish the sequence stratigraphic framework with the slope break in the study area. Coal seams regionally distributed are correlatable and isochronic, and record the termination of a depositional event or episode. So, the regional coal seam (more than 60 percent coverage) can be used as the genetic stratigraphic sequence boundary, while locally distributed coal seam (less than 60 percent coverage) can be used as the systems tract boundary. The thick coal seams distributed regionally in the middle of the Badaowan Formation and the lower part of the Xishanyao Formation in the study area act as the sequence boundaries, while the thin and locally distributed coal seam acts as the systems tract boundary, which results in the correlation of the division of sequence stratigraphy of the Jurassic to the whole basin where coal seams are developed extensively.展开更多
Where are the zones more enriched in sand deposits in the down slope and deep depression of the low swelling slope belt? Are there any screening conditions for oil and gas there? These are the chief geological problem...Where are the zones more enriched in sand deposits in the down slope and deep depression of the low swelling slope belt? Are there any screening conditions for oil and gas there? These are the chief geological problems to be solved during exploration of a region. Taking the Paleogene system developed along the east slope belt of Chengdao as an example the concepts of sequence stratigraphy and sedimentary sequenc are applied. A new research method likened to a way ''to get a melon by following the vine'' is proposed to determine the direction for exploring within un-drilled or less-drilled areas. This is the process: ''the characteristics of the sequence boundary ? the forming mechanism of the stratigraphic sequence ? the conditions of oil and gas accumulation ? the distribution zones of oil and gas''. The relationship between the dynamic mechanism of stratigraphic sequence and the forming conditions for oil and gas accumulation establishes that the tectonic disturbance of the slope belt has significant responses as denudation and deposition. Above the stratigraphic sequence boundary there are large scale sand bodies of the low stand system tract (LST) that have developed in the low swelling slope belt and its deep depression. Below the sequence boundary there are the remaining sand bodies of the high stand system tract (HST). On the slope there is a convergence of mudstone layers of the extended system tract (EST) with the mudstone of the underlying strata, which constitutes the screening conditions for the reservoir of the down slope and deep depression. The distribution regularities in preferred sand bodies on the surface of the sequence boundary, and in the system tract, indicate the ordering of oil-gas deposits. From the higher stand down to the depth of the slope there are, in order, areas where exploration was unfavorable, major areas of stratigraphic overlap of oil-gas reservoirs, unconformity screened oil-gas reservoirs, and, finally, sandstone lens oil-gas reservoirs. The low swelling slope belt of Chengdao was tectonically active, which is typical for a continental rift basin. The methodology and results of the present paper are significant for the theory and practice of predicting subtle reservoir and selecting strategic areas for exploration.展开更多
The dielectric barrier discharge(DBD)is presently used in many fields,in eluding plasma medicine,surface modification,and ozone synthesis;the influe nee of airflow on the DBD is a widely investigated topic.In this wor...The dielectric barrier discharge(DBD)is presently used in many fields,in eluding plasma medicine,surface modification,and ozone synthesis;the influe nee of airflow on the DBD is a widely investigated topic.In this work,a hysteresis characteristic on the initiating and extinguishing boundaries is observed in a nanosecond pulsed DBD,which is sensitive to the variation in the airflow velocities and pulse repetition frequencies(PRFs).It is found that,at a certain airflow velocity,the initiating PRF is higher than the extinguishing PRF.This differenee between the initiating PRF and the extinguishing PRF leads to a hysteresis phenomenon on the initiating and extinguishing boun daries.When the airflow velocity is in creased,both the initiating and extinguishing PRFs are increased and the differenee between the initiating PRF and the extinguishing PRF also increased.The hysteresis width between the initiating and extinguishing boundaries is enhanced.To explain these results,the physical processes involved with the seed particles and the mechanisms of forming discharge channels are discussed.展开更多
基金supported by National Key Research and Development Program of China(No.2021YFB3400800)National Natural Science Foundation of China(Grant No.52271136,51901177)Natural Science Foundation of Shaanxi Province(No.2021JC-06,2019TD-020).
文摘Grain boundaries(GBs)play a crucial role on the structural stability and mechanical properties of Cu and its alloys.In this work,molecular dynamics(MD)simulations are employed to study the effects of Fe solutes on the formation energy,excess volume,dislocations and melting behaviors of GBs in CuFe alloys.It is illustrated that Fe solute affects the structural stability of Cu GBs substantially,the formation energy of GBs is reduced,but the thickness and melting point of GBs are increased,that is,the structural stability of Cu GBs is significantly improved owing to the Fe solutes.A strong scaling law exists between the formation energy,excess volume,thickness and melting point of GBs.Therefore,Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2024SHFZ074,ZDYF2024SHFZ072,ZDYF2022SHFZ299)the National Natural Science Foundation of China(22109035,22202053,52164028,52274297,22309037)+4 种基金the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20083,20084,21125,23035)the collaborative Innovation Center of Marine Science and Technology,Hainan University(XTCX2022HYC04,XTCX2022HYC05)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhyb2022-87,Qhys2022-174)the Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.23JK0439)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.
基金the Natural Science Foundation of China(No.5 99760 13 and1983 2 0 3 0 )
文摘This paper presents a method to generate unstructured adaptive meshes with moving boundaries and its application to CFD. Delaunay triangulation criterion in conjunction with the automatic point creation is used to generate 2 D and 3 D unstructured grids. A local grid regeneration method is proposed to cope with moving boundaries. Numerical examples include the interactions of shock waves with movable bodies and the movement of a projectile within a ram accelerator, illustrating an efficient and robust mesh generation method developed.
基金supported in part by the National Science Foundation under Grants DMS-0807551, DMS-0720925, and DMS-0505473the Natural Science Foundationof China (10728101)supported in part by EPSRC grant EP/F029578/1
文摘We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.
文摘A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFF0203000)State Key Program of National Natural Science of China(Grant No.11834008)+2 种基金National Natural Science Foundation of China(Grant No.11774167)State Key Laboratory of Acoustics,Chinese Academy of Science(Grant No.SKLA201809)Administration of Quality Supervision,Inspection and Quarantine(AQSIQ)Technology Research and Development Program,China(Grant No.2017QK125)
文摘The acoustic radiation force on a fluid sphere immersed in water between two boundaries given by a Gaussian beam is theoretically and numerically investigated in this work. Based on the finite series method, the Gaussian beam is expressed in terms of Bessel function and a weighting parameter. The effects of the two boundaries concerned in our study is worked out by the image theory. This work also provides a reference when considering the effects of certain factors such as the radius of the sphere and the distance between the sphere and two boundaries. The contrast with the acoustic radiation force on a fluid sphere near only one boundary is also made in this paper. Our study can offer a theoretical basis for acoustics manipulation, acoustic sensors in the field of biomedical ultrasound and material science.
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501 and 51325204)the National Basic Research Program of China(Grant Nos.2011CB808401 and 2011CB921702)the Tainjin Supercomputing Center,Chinese Academy of Sciences
文摘By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.51501119)the Scientific Research Starting Foundation for Younger Teachers of Sichuan University,China(Grant No.2015SCU11058)+1 种基金the National Magnetic Confinement Fusion Science Program of China(Grant No.2013GB109002)the Cooperative Research Project "Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium",China
文摘The microstructures of titanium(Ti), an attractive tritium(T) storage material, will affect the evolution process of the retained helium(He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics(MD) simulation for the bulk hcp-Ti system and the system with grain boundary(GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic(the diffusion coefficient of the [0001] direction is higher than that of the basal plane),as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary(TB) can serve as an effective trapped region for He.The TB accelerates diffusion of He in the direction perpendicular to the twinning direction(TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region.
基金Zhao was supported by a scholarship from the China Scholarship Council,Li was partially supported by NSF of China(11731005)Cao was partially supported by NSF of China(11901264).
文摘This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992-2001).We first prove that this problem has a unique solution defined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R_(0)<1,or the initial infected area h_(0),expanding ability μ and the initial datum S_(0) are all small enough when 1<R_(0)<1+d/μ_(2)+α.Furthermore,we show that if 1<R_(0)<1+d/μ_(2)+α,the disease will spread when h_(0) is large enough or h_(0) is small but μ is large enough.It is expected that the disease will always spread when R_(0)≥1+d/μ_(2)+α which is different from the local model.
基金financially supported by the National Ten Thousand Talent Program for Young Top-notch Talentthe National Natural Science Fund for Excellent Young Scholars (52022030)+8 种基金the National Natural Science Foundation of China (51972111,52203330)the Shanghai Pilot Program for Basic Research(22TQ1400100-5)the “Dawn” Program of Shanghai Education Commission (22SG28)the Shanghai Municipal Natural Science Foundation (22ZR1418000)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission(22YF1410000)the Postdoctoral Research Foundation of China(2021M701190)the Fundamental Research Funds for the Central Universities (JKM01221621, JKM01221678)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2021ZD0042)Shanghai Engineering Research Center of Hierarchical Nanomaterials (18DZ2252400)。
文摘In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss and structural degradation. Here, the grain boundaries of perovskite polycrystalline films have been found to act as nanocapillaries for capturing perovskite quantum dots(PQDs), which enable the conformal assemble of PQDs at the top interspace between perovskite grains. The existence of PQDs passivated the surface defects, optimized the interfacial band alignments, and ultimately improved the power conversion efficiency from 19.27% to 22.47% in inverted PSCs. Our findings open up the possibility of selective assembly and structural modulation of the perovskite nanostructures towards efficient and stable PSCs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10432010 and 10472086)
文摘This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, from fractal to Wada basin boundaries in which no changes of accessible periodic orbits happen, and from Wada to Wada basin boundaries. In a model of mechanical oscillator, it shows that a Wada basin boundary can be smooth.
基金supported by the National Natural Science Foundation of China(Grant No.51476173)
文摘Boron distribution at grain boundaries in hot-deformed nickel is directly characterized by the time-of-flight secondary ion mass spectrometry. The segregations of boron are observed at both the random and twin grain boundaries. Two types of segregations at random grain boundaries are observed. The first type of segregation has a high intensity and small width. Its formation is attributed to the incorporating of dislocations into the moving grain boundaries. The second type of segregation arises from the cooling induced segregation at the dislocations associated with the grain boundaries. The segregation at twin boundary is similar to the second type of segregation at random grain boundaries.
基金Project supported by the Nation Natural Science Foundation of China(Grant Nos.11347219 and 11404147)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140519)+2 种基金the Training Project of Young Backbone Teacher of Jiangsu University,the Advanced Talents of Jiangsu University,China(Grant No.11JDG118)the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University,Chinathe State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLOA201308)
文摘The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures.The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries.More interestingly,at high temperatures,the ultimate strengths of the graphene with the zigzagorientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures,which is determined by inner initial stress in grain boundaries.The results indicate that the finite temperature,especially the high one,has a significant effect on the ultimate strength of graphene with grain boundaries,which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications.
基金Project supported by the State Key Development for Basic Research of China (Grant No 2004CB619302) and the National Natural Science Foundation of China (Grant No 50271038).
文摘This paper reports that an atomic scale study of [^-110] symmetrical tilt grain boundary (STGB) has been made with modified analytical embedded atom method (MAEAM) for 44 planes in three noble metals Au, Ag and Cu. For each metal, the energies of two crystals ideally joined together are unrealistically hlgh due to very short distance between atoms near the grain boundary (GB) plane. A relative slide between grains in the GB plane results in a significaut decrease in GB energy and a minimum value is obtained at specific translation distance. The minimum energy of Cu is much higher than that of Ag and Au, while the minimum energy of Ag is slightly higher than that of Au. For all the three metals, the three lowest energies correspond to identical (111), (113) and (331) boundary successively for two translations considered; from minimization of GB energy, these boundaries should be preferable in [^-110] STGB for noble metals. This is consistent with the experimental results. In addition, the minimum energy increases with increasing reciprocal planar coincidence density ∑, but decreases with increasing relative interplanar distance d/a.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11305136,11675230,11375242,and U1832112)
文摘Migration of He atoms and growth of He bubbles in high angle twist grain boundaries(HAGBs)in tungsten(W)are investigated by atomic simulation method.The energy and free volume(FV)of grain boundary(GB)are affected by the density and structure of dislocation patterns in GB.The migration energy of the He atom between the neighboring trapping sites depends on free volume along the migration path at grain boundary.The region of grain boundary around the He bubble forms an ordered crystal structure when He bubble grows at certain grain boundaries.The He atoms aggregate on the grain boundary plane to form a plate-shape configuration.Furthermore,high grain boundary energy(GBE)results in a large volume of He bubble.Thus,the nucleation and growth of He bubbles in twist grain boundaries depend on the energy of grain boundary,the dislocation patterns and the free volume related migration path on the grain boundary plane.
文摘The molecular dynamics simulation technique with many-body and semi-empirical potentials (based on the embedded atom method potentials) has been used to calculate the interactions of point defects with (1 1 1), (1 1 3), and (1 2 0) twin boundaries in Au at different temperatures. The interactions of single-, di-, and tri-vacancies (at on- and off-mirror sites) with the twin interfaces at 300 K are calculated. All vacancy clusters are favorable at the on-mirror arrangement near the (1 1 3) twin boundary. Single- and di-vacancies are more favorable at the on-mirror sites near the (1 1 l) twin boundary, while they are favorable at the oft-mirror sites near the (1 2 0) twin boundary. Almost all vacancy clusters energetically prefer to lie in planes closest to the interface rather than away from it, except for tri-vacancies near the (1 2 0) interface at the off-mirror site and for 3.3 and 3.4 vacancy clusters at both sites near the (1 1 1) interface, which are favorable away from the interface. The interaction energy is high at high temperatures.
文摘The Jurassic in the East Fukang Slope can be divided into six sequences based on sequence stratigraphy by combining logging, core and seismic data. The indicators of sequence boundaries include unconformity, coal seams, change of spore and pollen abundance, scour surfaces and base conglomerate, change of logging curve and sedimentary facies. How to determine the location of the first flooding surfaces and the maximum flooding surface is the key step to divide the systems tract. There occurred a topographic slope break in the East Fukang Slope when the Jurassic was deposited, and therefore we can recognize the location of the first flooding surface and establish the sequence stratigraphic framework with the slope break in the study area. Coal seams regionally distributed are correlatable and isochronic, and record the termination of a depositional event or episode. So, the regional coal seam (more than 60 percent coverage) can be used as the genetic stratigraphic sequence boundary, while locally distributed coal seam (less than 60 percent coverage) can be used as the systems tract boundary. The thick coal seams distributed regionally in the middle of the Badaowan Formation and the lower part of the Xishanyao Formation in the study area act as the sequence boundaries, while the thin and locally distributed coal seam acts as the systems tract boundary, which results in the correlation of the division of sequence stratigraphy of the Jurassic to the whole basin where coal seams are developed extensively.
基金The present paper is a part of the research work of the post-doc program: ''The Research on the Genesis of Paleogene Sand Bodies in the Chengdao East Slope and Its Controlling Factors'' (No.YKB 0804)
文摘Where are the zones more enriched in sand deposits in the down slope and deep depression of the low swelling slope belt? Are there any screening conditions for oil and gas there? These are the chief geological problems to be solved during exploration of a region. Taking the Paleogene system developed along the east slope belt of Chengdao as an example the concepts of sequence stratigraphy and sedimentary sequenc are applied. A new research method likened to a way ''to get a melon by following the vine'' is proposed to determine the direction for exploring within un-drilled or less-drilled areas. This is the process: ''the characteristics of the sequence boundary ? the forming mechanism of the stratigraphic sequence ? the conditions of oil and gas accumulation ? the distribution zones of oil and gas''. The relationship between the dynamic mechanism of stratigraphic sequence and the forming conditions for oil and gas accumulation establishes that the tectonic disturbance of the slope belt has significant responses as denudation and deposition. Above the stratigraphic sequence boundary there are large scale sand bodies of the low stand system tract (LST) that have developed in the low swelling slope belt and its deep depression. Below the sequence boundary there are the remaining sand bodies of the high stand system tract (HST). On the slope there is a convergence of mudstone layers of the extended system tract (EST) with the mudstone of the underlying strata, which constitutes the screening conditions for the reservoir of the down slope and deep depression. The distribution regularities in preferred sand bodies on the surface of the sequence boundary, and in the system tract, indicate the ordering of oil-gas deposits. From the higher stand down to the depth of the slope there are, in order, areas where exploration was unfavorable, major areas of stratigraphic overlap of oil-gas reservoirs, unconformity screened oil-gas reservoirs, and, finally, sandstone lens oil-gas reservoirs. The low swelling slope belt of Chengdao was tectonically active, which is typical for a continental rift basin. The methodology and results of the present paper are significant for the theory and practice of predicting subtle reservoir and selecting strategic areas for exploration.
文摘The dielectric barrier discharge(DBD)is presently used in many fields,in eluding plasma medicine,surface modification,and ozone synthesis;the influe nee of airflow on the DBD is a widely investigated topic.In this work,a hysteresis characteristic on the initiating and extinguishing boundaries is observed in a nanosecond pulsed DBD,which is sensitive to the variation in the airflow velocities and pulse repetition frequencies(PRFs).It is found that,at a certain airflow velocity,the initiating PRF is higher than the extinguishing PRF.This differenee between the initiating PRF and the extinguishing PRF leads to a hysteresis phenomenon on the initiating and extinguishing boun daries.When the airflow velocity is in creased,both the initiating and extinguishing PRFs are increased and the differenee between the initiating PRF and the extinguishing PRF also increased.The hysteresis width between the initiating and extinguishing boundaries is enhanced.To explain these results,the physical processes involved with the seed particles and the mechanisms of forming discharge channels are discussed.