Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of s...The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.展开更多
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金Project(51568006)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,China。
文摘The excavation of foundation pit generates soil deformation around existing metro tunnel with shield driving method,which may lead to the deformation of tunnel lining.It is a challenge to evaluate the deformation of shield tunnel accurately and take measures to reduce the tunnel upward displacement as much as possible for geotechnical engineers.A new simplified analytical method is proposed to predict the longitudinal deformation of existing metro tunnel due to excavation unloading of adjacent foundation pit in this paper.Firstly,the additional stress of soils under vertical axisymmetric load in layered soil is obtained by using elastic multi-layer theory.Secondly,the metro tunnel is regarded as a Timoshenko beam supported by Winkler foundation so that the shear effect of tunnels can be taken into account.The additional stress acting on the tunnel due to excavation unloading in layered soil are compared with that in homogeneous soil.Additionally,the effectiveness of the analytical solution is verified via two actual cases.Moreover,parametric analysis is conducted to investigate the responses of the metro tunnel by considering such factors as the variation of subgrade coefficient,offset distance from the excavation center to tunnel longitudinal axis as well as equivalent shear stiffness.The proposed method can be used to provide theoretical basis for similar engineering project.