期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SimAM注意力机制的轴承故障迁移诊断模型
被引量:
5
1
作者
包从望
朱广勇
+1 位作者
邹旺
郭灏
《机电工程》
CAS
北大核心
2024年第5期862-869,893,共9页
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行...
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行了归一化处理,经两层卷积层和两层池化层后,对输出特征进行了随机节点失活操作;然后,利用改进后的参数化修正线性单元(PReLU)激活函数自适应提取负值输入权值系数,分别以交叉熵损失函数监督训练有标签的源域数据,以均方对数误差(MSLE)作为损失函数训练无标签的目标数据;最后,利用自制实验台数据和凯斯西储轴承公开数据对模型进行了验证,分别以不同的单一工况作为源域,其余工况作为目标域进行了迁移诊断任务研究。研究结果表明:基于SimAM的轴承故障迁移诊断方具有较好的域不变特征提取的性能,且所提特征具有较好的聚类效果;自制实验台中的平均迁移精度在89.1%以上,最高均值可达97.85%,CWRU数据集中的平均迁移精度达98.68%。该成果可为后续轴承故障由实验向工业现场的迁移诊断奠定基础。
展开更多
关键词
轴承故障诊断
迁移学习
无参数注意力机制
自适应批量归一化
参数化修正线性单元
均方对数误差
卷积神经网络
在线阅读
下载PDF
职称材料
基于SimAM和SpinalNet的列车轮对踏面缺陷分类模型
被引量:
2
2
作者
张昌凡
胡新亮
+2 位作者
何静
刘建华
侯娜
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第6期38-43,共6页
为解决小样本问题下轮对踏面缺陷分类难题,提出一种基于简单无参注意力模块(SimAM)和脊柱神经网络(SpinalNet)踏面缺陷分类模型。首先,预训练网络提取原始图像各个类别特征图;其次,在有限的训练样本下,利用SimAM提取对缺陷图像表示性更...
为解决小样本问题下轮对踏面缺陷分类难题,提出一种基于简单无参注意力模块(SimAM)和脊柱神经网络(SpinalNet)踏面缺陷分类模型。首先,预训练网络提取原始图像各个类别特征图;其次,在有限的训练样本下,利用SimAM提取对缺陷图像表示性更强的类别特征;然后,利用SpinalNet关联特征图的局部和整体语义,得到缺陷类别特征的强区分性表示;最后,以强区分性表示特征输入带有L2正则化的softmax分类器,得到分类结果。试验结果表明:小样本任务评估指标准确率1和准确率2分别为68.35%和100%,优于目前主流深度学习模型,能够有效分类轮对踏面缺陷从而避免列车安全事故发生。
展开更多
关键词
轮对踏面
缺陷分类
简单无参注意力模块(
simam
)
脊柱神经网络(SpinalNet)
L2正则化
在线阅读
下载PDF
职称材料
改进ESP-YOLO的PCB缺陷检测算法
3
作者
王海群
王炳楠
葛超
《计算机工程与科学》
北大核心
2025年第2期317-326,共10页
PCB板的缺陷检测是保证其质量的重要手段。为了避免漏检、误检现象的发生,并提高PCB缺陷检测速度,提出了一种改进ESP-YOLO的PCB缺陷检测算法。引入ESP网络结构,通过ESPblock实现下采样,并改进特征提取模块,采用更轻量的网络结构实现特...
PCB板的缺陷检测是保证其质量的重要手段。为了避免漏检、误检现象的发生,并提高PCB缺陷检测速度,提出了一种改进ESP-YOLO的PCB缺陷检测算法。引入ESP网络结构,通过ESPblock实现下采样,并改进特征提取模块,采用更轻量的网络结构实现特征提取,解决PCB缺陷检测模型较大并且难以部署的问题;引入一种无参数注意力机制SimAM,在不增加网络参数的同时提高复杂环境中算法对目标的关注度,解决由于背景复杂导致的PCB缺陷漏检问题;引入RFB多尺度特征提取模块,扩大算法感受野并提高多尺度特征提取能力,解决由于缺陷大小差异导致的漏检问题;引入可学习参数特征融合模块BiFPN,提高融合特征图的特征表达能力。实验结果显示,ESP-YOLO算法的参数量和GFLOPs分别为5.32×106和11.2,相比YOLOv5s算法分别降低了23.8%和29.1%;平均精度为97.8%,相比于原YOLOv5s算法提升了3.2%。
展开更多
关键词
PCB缺陷检测
ESPNet
simam
RFB
BiFPN
YOLOv5s
在线阅读
下载PDF
职称材料
题名
基于SimAM注意力机制的轴承故障迁移诊断模型
被引量:
5
1
作者
包从望
朱广勇
邹旺
郭灏
机构
六盘水师范学院矿业与机械工程学院
中国矿业大学机电工程学院
出处
《机电工程》
CAS
北大核心
2024年第5期862-869,893,共9页
基金
贵州省教育厅基金资助项目(黔教合KY字〔2020〕117)
六盘水市科技计划项目(52020-2022-PT-02,52020-2019-05-12)
六盘水师范学院基金资助项目(LPSSYylzy2205)。
文摘
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行了归一化处理,经两层卷积层和两层池化层后,对输出特征进行了随机节点失活操作;然后,利用改进后的参数化修正线性单元(PReLU)激活函数自适应提取负值输入权值系数,分别以交叉熵损失函数监督训练有标签的源域数据,以均方对数误差(MSLE)作为损失函数训练无标签的目标数据;最后,利用自制实验台数据和凯斯西储轴承公开数据对模型进行了验证,分别以不同的单一工况作为源域,其余工况作为目标域进行了迁移诊断任务研究。研究结果表明:基于SimAM的轴承故障迁移诊断方具有较好的域不变特征提取的性能,且所提特征具有较好的聚类效果;自制实验台中的平均迁移精度在89.1%以上,最高均值可达97.85%,CWRU数据集中的平均迁移精度达98.68%。该成果可为后续轴承故障由实验向工业现场的迁移诊断奠定基础。
关键词
轴承故障诊断
迁移学习
无参数注意力机制
自适应批量归一化
参数化修正线性单元
均方对数误差
卷积神经网络
Keywords
bearing fault diagnosis
transfer learning
simple
parameter-free
attention
module
(
simam
)
adaptive batch normalization(AdaBN)
parametric rectified linear unit(PReLU)
mean squared logarithmic error(MSLE)
convolutional neural network
分类号
TH133.3 [机械工程—机械制造及自动化]
TP277 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
基于SimAM和SpinalNet的列车轮对踏面缺陷分类模型
被引量:
2
2
作者
张昌凡
胡新亮
何静
刘建华
侯娜
机构
湖南工业大学电气与信息工程学院
湖南工业大学轨道交通学院
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第6期38-43,共6页
基金
国家自然科学基金资助(52172403,62173137)
湖南省自然科学基金资助(2021JJ30217)
湖南省教育厅资助项目(19A137)。
文摘
为解决小样本问题下轮对踏面缺陷分类难题,提出一种基于简单无参注意力模块(SimAM)和脊柱神经网络(SpinalNet)踏面缺陷分类模型。首先,预训练网络提取原始图像各个类别特征图;其次,在有限的训练样本下,利用SimAM提取对缺陷图像表示性更强的类别特征;然后,利用SpinalNet关联特征图的局部和整体语义,得到缺陷类别特征的强区分性表示;最后,以强区分性表示特征输入带有L2正则化的softmax分类器,得到分类结果。试验结果表明:小样本任务评估指标准确率1和准确率2分别为68.35%和100%,优于目前主流深度学习模型,能够有效分类轮对踏面缺陷从而避免列车安全事故发生。
关键词
轮对踏面
缺陷分类
简单无参注意力模块(
simam
)
脊柱神经网络(SpinalNet)
L2正则化
Keywords
wheelset tread
defect classification
simple
parameter-free
attention
module
(
simam
)
spinal neural network(SpinalNet)
l2 regularization
分类号
X924.3 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
改进ESP-YOLO的PCB缺陷检测算法
3
作者
王海群
王炳楠
葛超
机构
华北理工大学电气工程学院
出处
《计算机工程与科学》
北大核心
2025年第2期317-326,共10页
基金
河北省自然科学基金(F2021209006)。
文摘
PCB板的缺陷检测是保证其质量的重要手段。为了避免漏检、误检现象的发生,并提高PCB缺陷检测速度,提出了一种改进ESP-YOLO的PCB缺陷检测算法。引入ESP网络结构,通过ESPblock实现下采样,并改进特征提取模块,采用更轻量的网络结构实现特征提取,解决PCB缺陷检测模型较大并且难以部署的问题;引入一种无参数注意力机制SimAM,在不增加网络参数的同时提高复杂环境中算法对目标的关注度,解决由于背景复杂导致的PCB缺陷漏检问题;引入RFB多尺度特征提取模块,扩大算法感受野并提高多尺度特征提取能力,解决由于缺陷大小差异导致的漏检问题;引入可学习参数特征融合模块BiFPN,提高融合特征图的特征表达能力。实验结果显示,ESP-YOLO算法的参数量和GFLOPs分别为5.32×106和11.2,相比YOLOv5s算法分别降低了23.8%和29.1%;平均精度为97.8%,相比于原YOLOv5s算法提升了3.2%。
关键词
PCB缺陷检测
ESPNet
simam
RFB
BiFPN
YOLOv5s
Keywords
PCB defect detection
efficient spatial pyramid network(ESPNet)
simple
and
parameter-free
attention
module
(
simam
)
receptive field block(RFB)
bi-directional feature pyramid network_add(Bi-FPN)
YOLOv5s
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SimAM注意力机制的轴承故障迁移诊断模型
包从望
朱广勇
邹旺
郭灏
《机电工程》
CAS
北大核心
2024
5
在线阅读
下载PDF
职称材料
2
基于SimAM和SpinalNet的列车轮对踏面缺陷分类模型
张昌凡
胡新亮
何静
刘建华
侯娜
《中国安全科学学报》
CAS
CSCD
北大核心
2022
2
在线阅读
下载PDF
职称材料
3
改进ESP-YOLO的PCB缺陷检测算法
王海群
王炳楠
葛超
《计算机工程与科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部