Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy...Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.展开更多
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material...Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs.展开更多
Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes i...Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.展开更多
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e...Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.展开更多
Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic propert...Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.展开更多
With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its ...With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.展开更多
Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes...Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources...The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources are inherently sustainable,and their full impact on the environment must be assessed.With the proliferation of invasive jellyfish species wreaking havoc on marine ecosystems and economies worldwide,utilizing overabundant jellyfish as a carbon source presents an opportunity to create energy-storage systems that are both financially beneficial and environmentally remediating.Accordingly,a comprehensive approach to sustainability also requires eco-friendly solutions throughout the entire lifecycle,from material sourcing to battery production,without compromising highperformance requirements.Currently,most electrode syntheses for lithium-ion batteries(LIBs) employed are energy-intensive,multiple-steps,complex,and additive-heavy.In response,this work pioneers the straightforward use of low-energy laser irradiation of a jellyfish biomass/silicon nanoparticle blend to encapsulate the silicon nanoparticles in-situ within the as-forming conductive carbonized matrix,creating sustainable and additive-free composite anodes.The self-standing anode is directly synthesized under ambient conditions and requires no post-processing.Here,a laser-synthesized conductive threedimensional porous carbon/silicon composite anode from raw jellyfish biomass for LIBs is presented,displaying outstanding cyclic stability(>1000 cycles),excellent capacity retention(>50% retention after1000 cycles),exceptional coulombic efficiency(>99%),superb reversible gravimetric capacity(>2000 mAh/g),and high rate performance capability(>1.6 A/g),paving a new path to future sustainable energy production.展开更多
The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode ...The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode integrity and cycle stability in lithium-ion batteries,limiting their practical applications.Despite considerable efforts to stabilize the SEI through surface modification,challenges persist in the development of high-performance Si anodes that effectively regulate intrinsic SEI properties and simultaneously facilitate electron/ion transport.Here,a highly conductive and organic electrolyte-compatible lamellar p-toluenesulfonic acid-doped polyaniline(pTAP) layer is proposed for constructing a robust artificial SEI on Si nanoparticles to achieve fast charging,lo ng-term cycle lifespan and high areal capacity.The spatially uniform pTAP layer,formed through a facile direct-encapsulation approach assisted by enriched hydrogen bonding,contributes to the effective formation of in situ SEI with an even distribution of the LiF-rich phase in its interlamination spaces.Furthermore,the integrated artificial SEI facilitates isotropic ion/electron transport,increased robustness,and effectively dissipates stress from volume changes.Consequently,a notably high rate performance of 570 mA h g^(-1),even at a substantially high current density of 10 A g^(-1),is achieved with excellent cyclic stability by showing a superior capacity over 1430 mA h g^(-1) at 1 A g^(-1) after 250 cycles and a high areal capacity of ca.2 mA h cm^(-2) at 0.5 C in a full cell system.This study demonstrates that the rational design of conductive polymers with SEI modulation for surface protection has great potential for use in high-energy-density Si anodes.展开更多
A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These...A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These CCFs were utilized as free-standing lithium-ion battery(LIB)anodes.Optimizing car-bonization temperature reveals that the CCFs exhibit a one-dimensional solid linear structure with a uni-form distribution of graphite-like microcrystals.These fibers possess a dense structure and smooth surface,with averaging diameter from approximately 125.0 to 210.0 nm at carbonization temperatures ranging from 600 to 900℃.During electrospinning and carbonization,the aromatic rings enriched in bituminous coal crosslink with PAN chains,forming a robust three-dimensional(3D)framework.This 3D microstructure significantly enhances the flexibility and tensile strength of CCFs,while increasing the graphite-like sp^(2)microcrystalline carbon content,thus improving electrical conductivity.The CCFs carbonized at 700℃demonstrate an optimal balance of sp^(3)amorphous and sp^(2)graphite-like carbons.The average diameter of CCFs-700 is 177 nm and the specific surface area(SSA)is 7.2 m^(2)g^(-1).Additionally,the fibers contain oxygen-containing functional groups,as well as nitrogen-containing func-tional groups,including pyridinic nitrogen and pyrrolic nitrogen.Owing to its characteristics,the CCFs-700 showcases remarkable electrochemical performance,delivering a high reversible capacity of 631.4 mAh g^(-1).CCFs-700 also exhibit outstanding cycle stability,which retains approximately all of their first capacity(400.1 mAh g^(-1))after 120 cycles.This research offers an economical yet scalable approach for producing flexible and self-supporting anodes for LIBs that do not require current collectors,binders and conductive additives,thereby simplifying the electrode fabrication process.展开更多
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s...Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.展开更多
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia...Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.展开更多
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug...Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.展开更多
Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availabi...Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,展开更多
Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural un...Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.展开更多
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical...Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.展开更多
Sodium-ion batteries(SIBs) have been considered to be potential candidates for next-generation low-cost energy storage systems due to the low-cost and abundance of Na resources. However, it is a big challenge to find ...Sodium-ion batteries(SIBs) have been considered to be potential candidates for next-generation low-cost energy storage systems due to the low-cost and abundance of Na resources. However, it is a big challenge to find suitable anode materials with low-cost and good performance for the application of SIBs. Hard carbon could be a promising anode material due to high capacity and expectable low-cost if originating from biomass. Herein, we report a hard carbon material derived from abundant and abandoned biomass of sorghum stalk through a simple carbonization method. The effects of carbonization temperature on microstructure and electrochemical performance are investigated. The hard carbon carbonized at 1300 ℃ delivers the best rate capability(172 mAh g^(-1) at 200 mA g^(-1)) and good cycling performance(245 mAh g^(-1) after 50 cycles at 20 mA g^(-1),96% capacity retention). This contribution provides a green route for transforming sorghum stalk waste into "treasure"of promising low-cost anode material for SIBs.展开更多
Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competiti...Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost,abundant availability and excellent structural stability.Pitch,with high carbon content and low cost,is an ideal raw precursor to prepare carbon materials for large-scale applications.Nevertheless,the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances,which are unfavorable for Na ion storage.Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials.This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon’s morphology and structure regulation strategies,including morphology adjustment,heteroatoms doping,fabricating heterostructures,and the increase of the degree of disorder.Besides,the advantages,present challenges,and possible solutions to current issues in pitch-based carbon anode are discussed,with the highlight of future research directions.This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs.展开更多
To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe203 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surf...To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe203 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surface area (〉1700 m2.g-1) and large pore volume (〉1.8 cm3-g-1). Fine Fe203 nanoparticles with sizes in the range of 5-7 nm were highly and homogenously encapsulated into CMK-5 matrix through ammonia-treatment and subsequent pyrolysis method. The Fe203 loading was carefully tailored and designed to warrant a high Fe203 content and adequate buffer space for improving the electrochemical performance. In particular, such Fe203 and mesoporous carbon composite with 47 wt% loading exhibits a considerably stable cycle performance (683 mAh.g-1 after 100 cycles, 99% capacity retention against that of the second cycle) as well as good rate capability. The fabrication strategy can effectively solve the drawback of single material, and achieve a high-performance lithium electrode material.展开更多
基金supported by the National Natural Science Foundation of China(5197219862133007)the Taishan Scholars Program of Shandong Province(tsqn201812002,ts20190908)+1 种基金the Shenzhen Fundamental Research Program(JCYJ20190807093405503)The Natural Science Foundation of Shandong Province(No.ZR2020JQ19)。
文摘Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.
基金financially supported by the Jiangsu Distinguished Professors Project(No.1711510024)the funding for Scientific Research Startup of Jiangsu University(Nos.4111510015,19JDG044)+3 种基金the Jiangsu Provincial Program for High-Level Innovative and Entrepreneurial Talents Introductionthe National Natural Science Foundation of China(No.22008091)Natural Science Foundation of Guangdong Province(2023A1515010894)the Open Project of Luzhou Key Laboratory of Fine Chemical Application Technology(HYJH-2302-A).
文摘Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs.
文摘Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.
基金funded by the Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-T03)the National Natural Science Foundation (22278423)+1 种基金the National Key Research and Development Program of China (2022YFB3805602)the Science Foundation of China University of Petroleum,Beijing (2462021QNXZ007)。
文摘Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.
基金financially supported by the National Key Research and Development Program of China(2022YFB3803600)the Fundamental Research Funds for the Central Universities(30106200463 and CCNU22CJ017)+1 种基金the National Natural Science Foundation of China(U20A20246)the Graduate Education Innovation Grant from Central China Normal University,China(20210407032)。
文摘Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.
基金supported by the National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(No.NRF-2021 M3 H4A1A02045962).
文摘With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.
基金supported by the National Natural Science Foundation of China (No. 22008256)。
文摘Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
文摘The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources are inherently sustainable,and their full impact on the environment must be assessed.With the proliferation of invasive jellyfish species wreaking havoc on marine ecosystems and economies worldwide,utilizing overabundant jellyfish as a carbon source presents an opportunity to create energy-storage systems that are both financially beneficial and environmentally remediating.Accordingly,a comprehensive approach to sustainability also requires eco-friendly solutions throughout the entire lifecycle,from material sourcing to battery production,without compromising highperformance requirements.Currently,most electrode syntheses for lithium-ion batteries(LIBs) employed are energy-intensive,multiple-steps,complex,and additive-heavy.In response,this work pioneers the straightforward use of low-energy laser irradiation of a jellyfish biomass/silicon nanoparticle blend to encapsulate the silicon nanoparticles in-situ within the as-forming conductive carbonized matrix,creating sustainable and additive-free composite anodes.The self-standing anode is directly synthesized under ambient conditions and requires no post-processing.Here,a laser-synthesized conductive threedimensional porous carbon/silicon composite anode from raw jellyfish biomass for LIBs is presented,displaying outstanding cyclic stability(>1000 cycles),excellent capacity retention(>50% retention after1000 cycles),exceptional coulombic efficiency(>99%),superb reversible gravimetric capacity(>2000 mAh/g),and high rate performance capability(>1.6 A/g),paving a new path to future sustainable energy production.
基金National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [NRF-2021R1A5A1084921]the “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea [No. 20204010600100]the Materials and Components Technology Development Program of the Ministry of Trade, Industry and Energy (MOTIE, Korea) and Korea Electronics Technology Institute (KETI) [20012224]。
文摘The extreme volume expansion of the silicon(Si) anodes during repeated cycles seriously induces undesirable interfacial side reactions,forming an unstable solid electrolyte interphase(SEI) that degrades the electrode integrity and cycle stability in lithium-ion batteries,limiting their practical applications.Despite considerable efforts to stabilize the SEI through surface modification,challenges persist in the development of high-performance Si anodes that effectively regulate intrinsic SEI properties and simultaneously facilitate electron/ion transport.Here,a highly conductive and organic electrolyte-compatible lamellar p-toluenesulfonic acid-doped polyaniline(pTAP) layer is proposed for constructing a robust artificial SEI on Si nanoparticles to achieve fast charging,lo ng-term cycle lifespan and high areal capacity.The spatially uniform pTAP layer,formed through a facile direct-encapsulation approach assisted by enriched hydrogen bonding,contributes to the effective formation of in situ SEI with an even distribution of the LiF-rich phase in its interlamination spaces.Furthermore,the integrated artificial SEI facilitates isotropic ion/electron transport,increased robustness,and effectively dissipates stress from volume changes.Consequently,a notably high rate performance of 570 mA h g^(-1),even at a substantially high current density of 10 A g^(-1),is achieved with excellent cyclic stability by showing a superior capacity over 1430 mA h g^(-1) at 1 A g^(-1) after 250 cycles and a high areal capacity of ca.2 mA h cm^(-2) at 0.5 C in a full cell system.This study demonstrates that the rational design of conductive polymers with SEI modulation for surface protection has great potential for use in high-energy-density Si anodes.
基金supported by the National Natural Science Foundation of China(Nos.52474290,52274261,52074109,52304284)the Open Subjects of Henan Provincial Key Laboratory of Coal Green Conversion(No.CGCF202201)+1 种基金the Key Scientific and Technological Project of Henan Province(No.242102240008)the Key Scientific Research Projects of Colleges and Universities in Henan Province(No.24A440003).
文摘A series of flexible and self-standing coal-derived carbon fibers(CCFs)were fabricated through electro-spinning coupled with carbonization using bituminous coal and polyacrylonitrile(PAN)as the carbon precursors.These CCFs were utilized as free-standing lithium-ion battery(LIB)anodes.Optimizing car-bonization temperature reveals that the CCFs exhibit a one-dimensional solid linear structure with a uni-form distribution of graphite-like microcrystals.These fibers possess a dense structure and smooth surface,with averaging diameter from approximately 125.0 to 210.0 nm at carbonization temperatures ranging from 600 to 900℃.During electrospinning and carbonization,the aromatic rings enriched in bituminous coal crosslink with PAN chains,forming a robust three-dimensional(3D)framework.This 3D microstructure significantly enhances the flexibility and tensile strength of CCFs,while increasing the graphite-like sp^(2)microcrystalline carbon content,thus improving electrical conductivity.The CCFs carbonized at 700℃demonstrate an optimal balance of sp^(3)amorphous and sp^(2)graphite-like carbons.The average diameter of CCFs-700 is 177 nm and the specific surface area(SSA)is 7.2 m^(2)g^(-1).Additionally,the fibers contain oxygen-containing functional groups,as well as nitrogen-containing func-tional groups,including pyridinic nitrogen and pyrrolic nitrogen.Owing to its characteristics,the CCFs-700 showcases remarkable electrochemical performance,delivering a high reversible capacity of 631.4 mAh g^(-1).CCFs-700 also exhibit outstanding cycle stability,which retains approximately all of their first capacity(400.1 mAh g^(-1))after 120 cycles.This research offers an economical yet scalable approach for producing flexible and self-supporting anodes for LIBs that do not require current collectors,binders and conductive additives,thereby simplifying the electrode fabrication process.
基金Research and Development Plan Project in Key Fields of Guangdong Province (2020B0101030005)Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120027)+1 种基金Scientific Research Innovation Project of Graduate School of South China Normal University (2024KYLX050)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds, pdjh2024a109)。
文摘Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.
基金the National Natural Science Foundation of China(No:21703285)。
文摘Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.
基金the financial support from the Australian Research CouncilCentre for Materials Science,Queensland University of Technology。
文摘Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.
文摘Silicon (Si) has been considered as one of the most promising anode material for tHe next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However. silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C. making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs,
基金financially supported by the National Natural Science Foundation of China(22209057)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J0839)。
文摘Carbon-based materials are recognized as anodes fulling of promise for potassium ion batteries(PIBs)due to advantages of affordable cost and high conductivity.However,they still face challenges including structural unstability and slow kinetics.It is difficult to achieve efficient potassium storage with unmodified carbonaceous anode.Herein,atomic bismuth(Bi)sites with different atom coordinations anchored on carbon nanosheets(CNSs)have been synthesized through a template method.The properties of prepared multi-doping carbon anodes Bi-N_(3)S_(1)/CNSs,Bi-N_(3)P_(1)/CNSs and Bi-N_(4)/CNSs were probed in PIBs.The configuration Bi-N_(3)S_(1) with stronger charge asymmetry exhibits superior potassium storage performance compared to Bi-N_(3)P_(1) and Bi-N_(4) configurations.The Bi-N_(3)S_(1)/CNSs display a rate capacity of 129.2 mAh g^(-1)even at 10 A g^(-1)and an impressive cyclability characterized by over 5000 cycles at 5 A g^(-1),on account of its optimal coordination environment with more active Bi centers and K^(+)adsorption sites.Notably,assembled potassium-ion full cell Mg-KVO//Bi-N_(3)S_(1)/CNSs also shows an outstanding cycling stability,enduring 3000 cycles at 2 A g^(-1).Therefore,it can be demonstrated that regulating the electronic structure of metallic centre M-N_(4) via changing the type of ligating atom is a feasible strategy for modifying carbon anodes,on the base of co-doping metal and non-metal.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21965034,21703185,U1903217,51901013,and 21666037)the Xinjiang Autonomous Region Major Projects(2017A02004)+4 种基金the Leading Project Foundation of Science Department of Fujian Province(Grant No.2018H0034)the Resource Sharing Platform Construction Project of Xinjiang Province(PT1909)the Nature Science Foundation of Xinjiang Province(2017D01C074)the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM201906)the Young Scholar Science Foundation of Xinjiang Educational Institutions(XJEDU2016S030)。
文摘Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.
基金financial support by the 2011 Program of Hubei ProvinceNational Key R&D Program of China (No.2015CB251100)+3 种基金National Science Foundation of China (No. 21673165, 21373155 and 21333007)Natural Science Foundation of Hubei Province, China (Grant No. 2015CFC774)Program for New Century Excellent Talents in University (NCET-12-0419)Hubei National Funds for Distinguished Young Scholars (2014CFA038)
文摘Sodium-ion batteries(SIBs) have been considered to be potential candidates for next-generation low-cost energy storage systems due to the low-cost and abundance of Na resources. However, it is a big challenge to find suitable anode materials with low-cost and good performance for the application of SIBs. Hard carbon could be a promising anode material due to high capacity and expectable low-cost if originating from biomass. Herein, we report a hard carbon material derived from abundant and abandoned biomass of sorghum stalk through a simple carbonization method. The effects of carbonization temperature on microstructure and electrochemical performance are investigated. The hard carbon carbonized at 1300 ℃ delivers the best rate capability(172 mAh g^(-1) at 200 mA g^(-1)) and good cycling performance(245 mAh g^(-1) after 50 cycles at 20 mA g^(-1),96% capacity retention). This contribution provides a green route for transforming sorghum stalk waste into "treasure"of promising low-cost anode material for SIBs.
基金financially supported by the Beijing Municipal Science and Technology Commission(Grant No.Z181100004718007)the National Key R&D Program of China(Grant No.2017YFB0102204)。
文摘Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost,abundant availability and excellent structural stability.Pitch,with high carbon content and low cost,is an ideal raw precursor to prepare carbon materials for large-scale applications.Nevertheless,the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances,which are unfavorable for Na ion storage.Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials.This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon’s morphology and structure regulation strategies,including morphology adjustment,heteroatoms doping,fabricating heterostructures,and the increase of the degree of disorder.Besides,the advantages,present challenges,and possible solutions to current issues in pitch-based carbon anode are discussed,with the highlight of future research directions.This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. DUT12ZD218)the National Natural Science Foundation of China (Grant No. 21103184)the Ph. D. Programs Foundation (Grant No. 20100041110017) of Ministry of Education of China
文摘To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe203 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surface area (〉1700 m2.g-1) and large pore volume (〉1.8 cm3-g-1). Fine Fe203 nanoparticles with sizes in the range of 5-7 nm were highly and homogenously encapsulated into CMK-5 matrix through ammonia-treatment and subsequent pyrolysis method. The Fe203 loading was carefully tailored and designed to warrant a high Fe203 content and adequate buffer space for improving the electrochemical performance. In particular, such Fe203 and mesoporous carbon composite with 47 wt% loading exhibits a considerably stable cycle performance (683 mAh.g-1 after 100 cycles, 99% capacity retention against that of the second cycle) as well as good rate capability. The fabrication strategy can effectively solve the drawback of single material, and achieve a high-performance lithium electrode material.