A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch...A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.展开更多
A new method is proposed to analyze multi-component linear frequency modulated (LFM) signals, which eliminates cross terms in conventional Wigner-Ville distribution (WVD). The approach is based on Radon transform ...A new method is proposed to analyze multi-component linear frequency modulated (LFM) signals, which eliminates cross terms in conventional Wigner-Ville distribution (WVD). The approach is based on Radon transform and Hilbert-Huang transform (HHT), which is a recently developed method adaptive to non-linear and non-stationary signals. The complicated signal is decomposed into several intrinsic mode functions (IMF) by the empirical mode decomposition (EMD), which makes the consequent instantaneous frequency meaningful. After the instantaneous frequency and Hilbert spectrum are computed, multi-component LFM signals detection and parameter estimation are obtained using Radon transform on the Hilbert spectrum plane. The simulation results show its feasibility and effectiveness.展开更多
In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using t...In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using the orthogonal matching pursuit and the Hilbert transform(OMHT method).First,according to the matching pursuit algorithm and the strong reflection-forming mechanism,and based on the sparse representation theory,a sparse dictionary,adapted to the characteristics of the strong reflection signal,was selected,and a matching decomposition of each signal was performed so that the weak target signal submerged in the strong reflection was displayed more strongly.Second,the Hilbert transform was used to extract multiple parameters,such as the instantaneous amplitude,the instantaneous frequency,and the instantaneous phase,from the processed signal,and the ground penetrating radar(GPR)image was comprehensively analyzed and determined from multiple angles.The results show that the OMHT method can accurately weaken the effect of the strong impedance interface and effectively enhance the weak reflected signal energy of hidden micro-crack in the shield tunnel segment.The resolution of the processed GPR image is greatly improved,and the reflected signal of the hidden micro-crack is easily visible,which proves the validity and accuracy of the analysis method.展开更多
为了检测触电时刻剩余电流中生物体触电支路电流信号的难题,应用Hilbert-Huang变换方法,确定了生物触电时剩余电流的固有模态函数中相关系数最大的IMF分量的局部幅值达34.02 m A,且与原信号相关性系数达到0.99,同时剩余电流与触电电流...为了检测触电时刻剩余电流中生物体触电支路电流信号的难题,应用Hilbert-Huang变换方法,确定了生物触电时剩余电流的固有模态函数中相关系数最大的IMF分量的局部幅值达34.02 m A,且与原信号相关性系数达到0.99,同时剩余电流与触电电流暂态过程频谱特性具有相似变化规律。以此为基础,应用生物电流信号高频IMF分量幅值的突变特征,作为触电故障时刻确定判据,建立生物触电故障时刻判定方法,实际数据的仿真处理正确率为94.17%;筛选剩余电流分解的相关性较高的有限个数的低频固有模态IMF分量,应用逐步多元线性回归方法,提出基于剩余电流固有模态分量的生物触电支路电流幅值检测方法,仿真试验结果的平均相对误差值5.46%,具有良好的适应性和实用性,为研发基于生物体触电电流而动作的剩余电流保护装置提供参考。展开更多
基金supported by the National Natural Science Foundation of China (60872108)the Postdoctoral Science Foundation of China(200902411+3 种基金20080430903)Heilongjiang Postdoctoral Financial Assistance (LBH-Z08129)the Scientific and Technological Creative Talents Special Research Foundation of Harbin Municipality (2008RFQXG030)Central University Basic Research Professional Expenses Special Fund Project
文摘A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.
文摘A new method is proposed to analyze multi-component linear frequency modulated (LFM) signals, which eliminates cross terms in conventional Wigner-Ville distribution (WVD). The approach is based on Radon transform and Hilbert-Huang transform (HHT), which is a recently developed method adaptive to non-linear and non-stationary signals. The complicated signal is decomposed into several intrinsic mode functions (IMF) by the empirical mode decomposition (EMD), which makes the consequent instantaneous frequency meaningful. After the instantaneous frequency and Hilbert spectrum are computed, multi-component LFM signals detection and parameter estimation are obtained using Radon transform on the Hilbert spectrum plane. The simulation results show its feasibility and effectiveness.
基金Projects(51678071,51608183)supported by the National Natural Science Foundation of ChinaProjects(CX2018B530,CX2018B531)supported by the Postgraduate Research and Innovation-funded Project of Hunan Province,ChinaProjects(16BCX13,16BCX09)supported by Changsha University of Science and Technology,China
文摘In the light of the problem of weak reflection signals shielded by strong reflections from the concrete surface,the detection and the recognition of hidden micro-cracks in the shield tunnel lining were studied using the orthogonal matching pursuit and the Hilbert transform(OMHT method).First,according to the matching pursuit algorithm and the strong reflection-forming mechanism,and based on the sparse representation theory,a sparse dictionary,adapted to the characteristics of the strong reflection signal,was selected,and a matching decomposition of each signal was performed so that the weak target signal submerged in the strong reflection was displayed more strongly.Second,the Hilbert transform was used to extract multiple parameters,such as the instantaneous amplitude,the instantaneous frequency,and the instantaneous phase,from the processed signal,and the ground penetrating radar(GPR)image was comprehensively analyzed and determined from multiple angles.The results show that the OMHT method can accurately weaken the effect of the strong impedance interface and effectively enhance the weak reflected signal energy of hidden micro-crack in the shield tunnel segment.The resolution of the processed GPR image is greatly improved,and the reflected signal of the hidden micro-crack is easily visible,which proves the validity and accuracy of the analysis method.
文摘为了检测触电时刻剩余电流中生物体触电支路电流信号的难题,应用Hilbert-Huang变换方法,确定了生物触电时剩余电流的固有模态函数中相关系数最大的IMF分量的局部幅值达34.02 m A,且与原信号相关性系数达到0.99,同时剩余电流与触电电流暂态过程频谱特性具有相似变化规律。以此为基础,应用生物电流信号高频IMF分量幅值的突变特征,作为触电故障时刻确定判据,建立生物触电故障时刻判定方法,实际数据的仿真处理正确率为94.17%;筛选剩余电流分解的相关性较高的有限个数的低频固有模态IMF分量,应用逐步多元线性回归方法,提出基于剩余电流固有模态分量的生物触电支路电流幅值检测方法,仿真试验结果的平均相对误差值5.46%,具有良好的适应性和实用性,为研发基于生物体触电电流而动作的剩余电流保护装置提供参考。