Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c...Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models.展开更多
This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RF...Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RFF-related information is mainly in the form of unintentional modulation(UIM),which is subtle enough to be effectively imperceptible and is submerged in the intentional modulation(IM).It is necessary to minimize the influence of the IM and expand the slight differences between emitters for successful RFF.This paper proposes a UIM microstructure enlargement(UMME)method based on feature-level adaptive signal decomposition(ASD),accompanied by autocorrelation and cross-correlation analysis.The common IM part is evaluated by analyzing a newly-defined benchmark feature.Three different indexes are used to quantify the similarity,distance,and dependency of the RFF features from different devices.Experiments are conducted based on the real-world signals transmitted from 20 of the same type of radar in the same working mode.The visual image qualitatively shows the magnification of feature differences;different indicators quantitatively describe the changes in features.Compared with the original RFF feature,recognition results based on the Gaussian mixture model(GMM)classifier further validate the effectiveness of the proposed algorithm.展开更多
基金Project(2020TJ-Q06)supported by Hunan Provincial Science&Technology Talent Support,ChinaProject(KQ1707017)supported by the Changsha Science&Technology,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models.
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金This work was supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004).
文摘Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RFF-related information is mainly in the form of unintentional modulation(UIM),which is subtle enough to be effectively imperceptible and is submerged in the intentional modulation(IM).It is necessary to minimize the influence of the IM and expand the slight differences between emitters for successful RFF.This paper proposes a UIM microstructure enlargement(UMME)method based on feature-level adaptive signal decomposition(ASD),accompanied by autocorrelation and cross-correlation analysis.The common IM part is evaluated by analyzing a newly-defined benchmark feature.Three different indexes are used to quantify the similarity,distance,and dependency of the RFF features from different devices.Experiments are conducted based on the real-world signals transmitted from 20 of the same type of radar in the same working mode.The visual image qualitatively shows the magnification of feature differences;different indicators quantitatively describe the changes in features.Compared with the original RFF feature,recognition results based on the Gaussian mixture model(GMM)classifier further validate the effectiveness of the proposed algorithm.