For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, a...Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array...This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)...There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.展开更多
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu...In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.展开更多
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the F...Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectiv...This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
文摘Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
基金supported by the National Natural Science Foundation of China(6117119761371045+2 种基金61201307)the Shandong Provincial Natural Science Foundation(ZR2011FM005)the Shandong Provincial Promotive Research Fund for Excellent Young and Middle-aged Scientists(BS2010DX001)
文摘This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2014 ZX03001027)
文摘There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.
文摘In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金supported by the National Natural Science Foundation of China (61871146,61622107)the China Scholarship Council(201906120113)。
文摘Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金supported by the National Natural Science Foundation of China(62031015).
文摘This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.