High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming sch...In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.展开更多
The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circu...The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.展开更多
After a brief recall of the Sidelobe Canceler (SLC) working principle, including the derivation of a general formula for the Cancellation Ratio (CR), the effects of channel mismatching are investigated. In particular,...After a brief recall of the Sidelobe Canceler (SLC) working principle, including the derivation of a general formula for the Cancellation Ratio (CR), the effects of channel mismatching are investigated. In particular, curves providing CRvalues as a function of amplitude and phase channel mismatching, radar bandwidth, and jammer direction of arrival (JDOA) are provided for the cases of one and two auxiliary antennas. Subsequently, a time -space processor for performance restoration is analyzed in detail. In addition to the above mentioned quantities, the attainable CR value is expressed as a function of the space-time processor parameters. The contribution of the paper is related to the derivation of a number of mathematical equations of CR for several cases of practical interest for the radar engineer. In addition, several curves are presented to assist design of SLC systems.展开更多
Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t...Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.展开更多
Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted sign...Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted signal,a high level range or Doppler sidelobes may exist in the ambiguity function which will degrade the target detection performance.Mismatched filtering is a common method to deal with the ambiguity sidelobe problem.However,when mismatched filtering is applied,sidelobes cannot be eliminated completely.The residual sidelobes will cause false-alarm when the constant false alarm ratio(CFAR)is applied.To deal with this problem,a new target detection method based on preprocessing is proposed.In this new method,the ambiguity range and Doppler sidelobes are recognized and eliminated by the preprocessing method according to the prior information.CFAR is also employed to obtain the information of the target echo.Simulation results and results on real data illustrate the effectiveness of the proposed method.展开更多
Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal wi...Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal with discontinuous bands is presented. A novel two-dimensional signal processing scheme for this signal is proposed on the basis of delicate signal analysis. Simulation results demonstrate that the scheme could successfully realize the resolutions by decoupling the range-Doppler ambiguity, and effectively suppress the maximal sidelobe. Moreover, the scheme is simple and has good numerical stability.展开更多
This work proposes constrained constant modulus unscented Kalman filter(CCM-UKF) algorithm and its low-complexity version called reduced-rank constrained constant modulus unscented Kalman filter(RR-CCM-UKF) algorithm ...This work proposes constrained constant modulus unscented Kalman filter(CCM-UKF) algorithm and its low-complexity version called reduced-rank constrained constant modulus unscented Kalman filter(RR-CCM-UKF) algorithm for blind adaptive beamforming. In the generalized sidelobe canceller(GSC) structure, the proposed algorithms are devised according to the CCM criterion. Firstly, the cost function of the constrained optimization problem is transformed to suit the Kalman filter-style state space model. Then, the optimum weight vector of the beamformer can be estimated by using the recursive formulas of UKF. In addition, the a priori parameters of UKF(system and measurement noises) are processed adaptively in the implementation. Simulation results demonstrate that the proposed algorithms outperform the existing methods in terms of convergence speeds, output signal-tointerference-plus-noise ratios(SINRs), mean-square deviations(MSDs) and robustness against steering mismatch.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beam...For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.展开更多
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
文摘In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.
文摘After a brief recall of the Sidelobe Canceler (SLC) working principle, including the derivation of a general formula for the Cancellation Ratio (CR), the effects of channel mismatching are investigated. In particular, curves providing CRvalues as a function of amplitude and phase channel mismatching, radar bandwidth, and jammer direction of arrival (JDOA) are provided for the cases of one and two auxiliary antennas. Subsequently, a time -space processor for performance restoration is analyzed in detail. In addition to the above mentioned quantities, the attainable CR value is expressed as a function of the space-time processor parameters. The contribution of the paper is related to the derivation of a number of mathematical equations of CR for several cases of practical interest for the radar engineer. In addition, several curves are presented to assist design of SLC systems.
基金supported by the National Natural Science Foundation of China(62001481,61890542)the Natural Science Foundation of Hunan Province(2021JJ40686).
文摘Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(61401526).
文摘Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted signal,a high level range or Doppler sidelobes may exist in the ambiguity function which will degrade the target detection performance.Mismatched filtering is a common method to deal with the ambiguity sidelobe problem.However,when mismatched filtering is applied,sidelobes cannot be eliminated completely.The residual sidelobes will cause false-alarm when the constant false alarm ratio(CFAR)is applied.To deal with this problem,a new target detection method based on preprocessing is proposed.In this new method,the ambiguity range and Doppler sidelobes are recognized and eliminated by the preprocessing method according to the prior information.CFAR is also employed to obtain the information of the target echo.Simulation results and results on real data illustrate the effectiveness of the proposed method.
文摘Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal with discontinuous bands is presented. A novel two-dimensional signal processing scheme for this signal is proposed on the basis of delicate signal analysis. Simulation results demonstrate that the scheme could successfully realize the resolutions by decoupling the range-Doppler ambiguity, and effectively suppress the maximal sidelobe. Moreover, the scheme is simple and has good numerical stability.
基金Project(61573113)supported by the National Natural Science Foundation of ChinaProject(2014RFXXJ074)supported by the Science and Technology Innovation Talents Research Fund of Harbin,China
文摘This work proposes constrained constant modulus unscented Kalman filter(CCM-UKF) algorithm and its low-complexity version called reduced-rank constrained constant modulus unscented Kalman filter(RR-CCM-UKF) algorithm for blind adaptive beamforming. In the generalized sidelobe canceller(GSC) structure, the proposed algorithms are devised according to the CCM criterion. Firstly, the cost function of the constrained optimization problem is transformed to suit the Kalman filter-style state space model. Then, the optimum weight vector of the beamformer can be estimated by using the recursive formulas of UKF. In addition, the a priori parameters of UKF(system and measurement noises) are processed adaptively in the implementation. Simulation results demonstrate that the proposed algorithms outperform the existing methods in terms of convergence speeds, output signal-tointerference-plus-noise ratios(SINRs), mean-square deviations(MSDs) and robustness against steering mismatch.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
文摘For a large-scale adaptive array, the heavy computational load and the high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. An efficient parallel digital beamforming (DBF) algorithm based on the least mean square algorithm (PLMS) is proposed. An appropriate method is found to partition the least mean square (LMS) algorithm into a number of operational modules, which can be easily executed in a distributed-parallel-processing fashion. As a result, the proposed PLMS algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. PLMS requires less computational load than that of the conventional parallel algorithms based on the recursive least square (RLS) algorithm, as well as it is easier to be implemented to do real time adaptive array processing. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. Finally, a scheme of the PLMS algorithm using distributed-parallel-processing system is also proposed. The simulation results demonstrate that the PLMS algorithm has the same interference cancellation performance as that of the conventional LMS algorithm. Moreover, the PLMS algorithm can obtain the same good beamforming performance, regardless how the algorithm is partitioned. It is expected that the proposed algorithm will be used in a large-scale adaptive array system to deal with real time adaptive digital beamforming processing.