期刊文献+
共找到833篇文章
< 1 2 42 >
每页显示 20 50 100
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
1
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
2
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于复合域多尺度分解的红外偏振图像融合方法 被引量:1
3
作者 陈广秋 魏洲 +1 位作者 段锦 黄丹丹 《吉林大学学报(理学版)》 北大核心 2025年第2期479-491,共13页
针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切... 针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切波变换对基础层图像进行多尺度多方向分解,得到低频子带图像和高频子带图像;其次,对高频子带采用主成分分析-自适应脉冲耦合神经网络融合规则,对低频子带采用改进的卷积稀疏表示进行系数合并,细节层融合采用基于像素相似度的局部能量加权和选择性融合规则;最后,在复合域内利用逆变换重构出融合图像.实验结果表明,该方法在主观视觉性能和8个客观评价指标上均优于其他对比融合方法,说明该方法在红外偏振图像融合中具有较多优势,能有效提高融合图像的质量. 展开更多
关键词 红外偏振图像融合 非下采样剪切波变换 自适应脉冲耦合神经网络 卷积稀疏表示
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:2
4
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
5
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
融合关键区域信息的双流网络视频表情识别
6
作者 孔英会 崔文婷 +1 位作者 张珂 车辚辚 《智能系统学报》 北大核心 2025年第3期658-669,共12页
人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息... 人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息的双流网络表情识别方法。构建空间-时间双流网络,其中空间网络分支结合面部运动单元和CSFA(channel-spatial frame attention),重点关注影响表情识别结果的面部关键区域,以实现空间特征的有效提取;时间分支通过Farneback提取光流获得帧间的表情运动信息,并借助空间关键区域掩模选取降低光流计算复杂度。对空间-时间双流网络识别结果进行决策融合,得到最终视频表情识别结果。该方法在eNTERFACE'05、CK+数据集上进行实验测试,结果表明本文所提方法可有效提升识别精度,且提高了运行效率。 展开更多
关键词 视频表情识别 双流网络 注意力机制 光流 卷积神经网络 掩模 特征融合 面部表情识别
在线阅读 下载PDF
融合局部和全局特征的深度多视图聚类网络
7
作者 李顺勇 李嘉茗 +1 位作者 曹付元 郑孟蛟 《计算机科学与探索》 北大核心 2025年第8期2085-2098,共14页
多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多... 多视图聚类是当前数据分析领域的一个重要研究方向,旨在通过整合来自不同视角的数据,提升聚类精度。然而,传统的多视图聚类方法虽然在一定程度上提高了聚类效果,但往往忽略了视图间局部与全局特征的交互与融合。此外,尽管近年提出的多视图深度聚类方法,通过深度神经网络或对比学习增强了表征能力,但大多只关注局部或全局特征,未能在同一框架下对这两类特征进行综合处理。针对这些不足,提出了一种融合卷积神经网络与Transformer的深度多视图聚类模型(DMVCN-ILGF)。该模型设计了并行的卷积分支和Transformer分支,分别用于提取局部特征和全局特征。为了实现特征的有效融合,引入了特征交互机制(FIM)和特征融合模块(FFM),通过充分整合各视图的特征信息,以增强不同特征的交互和融合,最终提升聚类性能。进一步地,还设计了实例级和类别级对比损失,分别计算各视图的局部与全局特征之间的相似性,从而优化模型的表征能力和聚类效果。实验结果表明,提出的DMVCN-ILGF模型在多个多视图数据集上均取得了显著优于现有方法的聚类性能。 展开更多
关键词 多视图聚类 卷积神经网络 TRANSFORMER 特征融合
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
8
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
基于足压与姿态信息融合的步态相位识别方法
9
作者 颜兵兵 宋佳宝 +2 位作者 单琳娜 王璐 陈光 《兵器装备工程学报》 北大核心 2025年第5期177-184,共8页
针对医疗康复和人机交互领域中下肢外骨骼机器人对人体步态识别的需求,提出了一种基于足压与姿态信息融合的步态相位识别方法。以足底压力分布和足部运动姿态为研究对象,构建出一套可穿戴式足部运动数据采集系统,并收集了平地行走、坡... 针对医疗康复和人机交互领域中下肢外骨骼机器人对人体步态识别的需求,提出了一种基于足压与姿态信息融合的步态相位识别方法。以足底压力分布和足部运动姿态为研究对象,构建出一套可穿戴式足部运动数据采集系统,并收集了平地行走、坡路行走和上楼梯3种步态信息。采用卷积神经网络分类算法对上述3种步态进行相位识别,平地行走、坡路行走和上楼梯3种步态相位识别率分别达到97.0%、97.4%、97.6%。通过与支持向量机和反向传播神经网络的步态相位识别效果进行对比,验证了基于卷积神经网络的步态相位识别方法的精确性,为下肢外骨骼机器人在智能化人机协作中的应用提供了重要支持。 展开更多
关键词 步态相位识别 足底压力 足部姿态 卷积神经网络 信息融合
在线阅读 下载PDF
基于自适应多分支卷积的声学场景分类
10
作者 韦娟 何德华 宁方立 《系统工程与电子技术》 北大核心 2025年第10期3148-3154,共7页
针对声学场景分类任务中模型特征表达能力不充足的问题,提出一种基于自适应多分支卷积优化的网络架构。首先,使用多支路分别提取特征,再引入动态权重自适应改变权值平衡每个支路,提升特征感知能力。其次,考虑现有模型分类时忽略类与类... 针对声学场景分类任务中模型特征表达能力不充足的问题,提出一种基于自适应多分支卷积优化的网络架构。首先,使用多支路分别提取特征,再引入动态权重自适应改变权值平衡每个支路,提升特征感知能力。其次,考虑现有模型分类时忽略类与类之间的关系问题,引入粗粒度分类器辅助训练原分类模型,通过结果融合增强分类过程。在TUT2020移动开发数据集上进行训练与测试。实验结果表明,相较于优化前的算法,所提模型在准确率上提升了6.5%,证明所提方法可以有效提升整体分类效果。 展开更多
关键词 声学场景分类 卷积神经网络 自适应特征融合 层次结构
在线阅读 下载PDF
共享超分的双分支遥感图像时空融合网络
11
作者 方帅 张小溪 张晶 《电子学报》 北大核心 2025年第2期581-594,共14页
本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1... 本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1)构建了互补性的网络框架,虽然该框架是端到端的深度学习模型,但每个模块有各自的物理意义和任务,通过增加中间监督,分别实现空间维的超分建模,时间维的变化预测建模,以及两者优势互补的融合建模;(2)对变化预测的数学表示进行推演,利用一个非线性补偿模块,使得两分支共享超分模块,在共享超分模块和递归复用超分单元的双重策略下,显著降低了网络参数;(3)递归超分模块使用固定的2倍率超分单元,在有效监督和有效参考下,渐进式进行特征增强与图像重建,这可以有效提高超分精度,且通过调整超分单元个数,灵活适应不同倍率差异的时空融合任务.SSRDB算法在空间和光谱特性上以及变化区域上都展现了优秀的融合效果,RMSE(Root Mean Squared Error)、SAM(Spectral Angle Mapper)和SSIM(Structural Similarity)3个定量评价指标显示,在CIA(Coleambally lrrigation Area)数据集上分别优于次优方法 7.067%、2.065%、0.563%;在LGC(Lower Gwydir Catchment)数据集上分别优于次优方法5.319%、5.490%、1.455%;在Nanjing数据集上分别优于次优方法6.486%、16.290%、0.481%. 展开更多
关键词 遥感图像 时空融合 双分支 图像超分 卷积神经网络
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
12
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
基于MSIF-2DCNN的航空发动机中介轴承故障诊断方法
13
作者 郭伟超 辛晓行 +3 位作者 杜亮 王景琪 思悦 李淑娟 《振动与冲击》 北大核心 2025年第21期248-257,共10页
由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convol... 由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convolutional neural network,2DCNN)的航空发动机中介轴承故障诊断方法。该方法将多个传感器的时域和频域特征融合为一张RGB图像,从而更加全面地表征中介轴承状态。然后,将生成的RGB图像输入2DCNN模型完成故障诊断。在真实航空发动机试验台的轴承故障数据上的测试中,当训练集与测试集比例为1∶9的小样本条件时,部分传感器组合的诊断准确率即可达99%;比例为7∶3时所有传感器组合的准确率均达100%。此外,所提方法的诊断准确率与基础研究相比,至少提高了13%;且超越了进行对比的5种先进方法。结果表明,该方法不仅实现了航空发动机中介轴承故障的快速精准识别,还在小样本条件下展现出了卓越的诊断性能。 展开更多
关键词 航空发动机 中介轴承 多传感器信息融合(MSIF) 故障诊断 卷积神经网络
在线阅读 下载PDF
融合多源信息及图像特征泛化的空气质量检测
14
作者 王晓婷 崔雅博 刘丽娜 《电子测量技术》 北大核心 2025年第13期166-173,共8页
针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气... 针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气象信息映射为与大气图像对应的特征向量,并与大气图像特征进行拼接融合;然后利用全连接层将全局特征输出为标量,并利用损失函数检测出空气的PM_(2.5)浓度;最后在网络模型训练阶段,通过对大气图像不同尺度的特征进行随机泛化增强来丰富样本分布空间,使网络能够在有限的数据样本中学习到更多特征,从而有效改善了检测网络的性能。实验结果表明:设计的检测方法与几种主流的方法相比具有更高的检测精度和稳定性,在测试集上得到的RMSE和R-squared分别为21.55μg/m^(3)和0.923,通过对8个场景检测,得到结果的平均误差仅为5.2%,最大误差也仅为7.6%,能够适应各类极端大气污染环境的空气质量检测任务。 展开更多
关键词 空气质量 PM_(2.5)检测 卷积神经网络 多源信息 特征泛化增强 特征融合
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
15
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
16
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷积神经网络 多尺度特征融合
在线阅读 下载PDF
基于TransNeXt的红外与可见光图像融合
17
作者 杨艳春 杨万轩 雷慧云 《湖南大学学报(自然科学版)》 北大核心 2025年第8期69-79,共11页
针对红外与可见光图像融合过程中出现的细节丢失和易产生伪影等问题,本文提出了一种基于TransNeXt的融合算法.首先,通过卷积神经网络与TransNeXt对源图像进行浅层与深层特征提取,并通过信息补偿模块对红外浅层特征进行信息补偿,使其具... 针对红外与可见光图像融合过程中出现的细节丢失和易产生伪影等问题,本文提出了一种基于TransNeXt的融合算法.首先,通过卷积神经网络与TransNeXt对源图像进行浅层与深层特征提取,并通过信息补偿模块对红外浅层特征进行信息补偿,使其具有更多的语义信息.然后,通过基于交叉注意力的融合模块进行特征融合,它能够根据源图像不同区域的重要性调整权重以适应场景变化,提高融合结果的鲁棒性和准确性.最后,通过基于Trans-former的模块进行图像重建以得到最终融合图像.此外,本文通过基于VGG19显著区域掩膜的损失函数约束融合过程,使融合结果在重要区域保留更丰富的信息.实验结果表明,与其他7种对比方法相比,本文方法的客观评价指标信息熵、标准差、差异相关性总和、峰值信噪比和像素特征互信息分别平均提高了10.92%、14.85%、24.80%、2.26%、1.30%,并且能够在保留丰富的纹理信息的同时伪影较少,具有优异的夜间灯光融合效果,在目标检测上相较对比方法也取得了更好的效果. 展开更多
关键词 红外与可见光图像融合 卷积神经网络 TRANSFORMER TransNeXt
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
18
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于级联的多尺度特征融合残差去噪网络
19
作者 郭业才 胡晓伟 毛湘南 《计算机科学》 北大核心 2025年第6期239-246,共8页
针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特... 针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特征。在多尺度空间U-Net模块中,利用多尺度空间融合块增强网络对图像整体结构的学习能力,学习不同层次的信息,获取基于图像空间和上下文信息的多级特征。跳跃连接促进结构之间的参数共享,使不同尺度的特征充分融合,保证信息的完整性。最后,采用双残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上的峰值信噪比分别为39.68 dB和39.50 dB,结构相似性分别为0.953和0.957,优于主流去噪算法。所提算法在增强去噪性能的同时,也保留了更详细的信息,使图像质量进一步提升。 展开更多
关键词 图像去噪 真实噪声 卷积神经网络 多尺度特征融合 密集残差
在线阅读 下载PDF
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
20
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷积神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部