Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.How...Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research.展开更多
The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter su...The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.展开更多
The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity an...The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity and improve the ranging accuracy by estimating parameters of the echo signal with fractional Fourier transform and self-correlation.And,a new quick searching algorithm was given also to increase the calculation speed.Compared to the Chinese remainder theorem method,the proposed method is excellent for its simplicity and reducing the computation complexity.The simulation results show its validity.展开更多
基金supported by the Foundation of Equipment Preresearch Area(Grant No.80919010303).
文摘Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘The airborne conformal array(CFA)radar's clutter ridges are range-modulated,which result in a bias in the estimation of the clutter covariance matrix(CCM)of the cell under test(CUT),further,reducing the clutter suppression performance of the airborne CFA radar.The clutter ridges can be effectively compensated by the space-time separation interpolation(STSINT)method,which costs less computation than the space-time interpolation(STINT)method,but the performance of interpolation algorithms is seriously affected by the short-range clutter,especially near the platform height.Location distributions of CFA are free,which yields serious impact that range spaces of steering vector matrices are non-orthogonal complement and even no longer disjoint.Further,a new method is proposed that the shortrange clutter is pre-processed by oblique projection with the intersected range spaces(OPIRS),and then clutter data after being pre-processed are compensated to the desired range bin through the STSINT method.The OPIRS also has good compatibility and can be used in combination with many existing methods.At the same time,oblique projectors of OPIRS can be obtained in advance,so the proposed method has almost the same computational load as the traditional compensation method.In addition,the proposed method can perform well when the channel error exists.Computer simulation results verify the effectiveness of the proposed method.
基金Sponsored by the NUST Research Fundation(2010ZYTS030)the Specialized Research Fundation for the Doctoral Program of Higher Education(20093219120018)
文摘The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity and improve the ranging accuracy by estimating parameters of the echo signal with fractional Fourier transform and self-correlation.And,a new quick searching algorithm was given also to increase the calculation speed.Compared to the Chinese remainder theorem method,the proposed method is excellent for its simplicity and reducing the computation complexity.The simulation results show its validity.