短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou...短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。展开更多
为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short te...为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short term memory,LSTM)模型对线性预测后的残差序列进行非线性修正预测。考虑到冗余特征会降低LSTM模型预测精度的问题,采用自编码器(autoencoder,AE)模型对LSTM模型的天气以及流量特征输入进行自适应压缩优化,最后设置对比实验对ARMA-AE-LSTM模型的准确性、鲁棒性以及时效性进行验证。实验结果表明:预测绝对误差在1.3架以内的占比达到75%;LSTM模型的平均每轮迭代时间降低为1.014 s;与其他常用深度学习预测模型相比,ARMA-AE-LSTM模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)以及决定系数(r-squared,R2)评价指标分别改善了45.98%~67.66%、48.56%~67.35%、5.18%~21.07%;恶劣天气影响下,ARMA-AE-LSTM模型的鲁棒性更好。由此可见,该方法能够准确有效快速的预测空中交通流量。展开更多
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio...交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性.展开更多
文摘短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。
文摘为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short term memory,LSTM)模型对线性预测后的残差序列进行非线性修正预测。考虑到冗余特征会降低LSTM模型预测精度的问题,采用自编码器(autoencoder,AE)模型对LSTM模型的天气以及流量特征输入进行自适应压缩优化,最后设置对比实验对ARMA-AE-LSTM模型的准确性、鲁棒性以及时效性进行验证。实验结果表明:预测绝对误差在1.3架以内的占比达到75%;LSTM模型的平均每轮迭代时间降低为1.014 s;与其他常用深度学习预测模型相比,ARMA-AE-LSTM模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)以及决定系数(r-squared,R2)评价指标分别改善了45.98%~67.66%、48.56%~67.35%、5.18%~21.07%;恶劣天气影响下,ARMA-AE-LSTM模型的鲁棒性更好。由此可见,该方法能够准确有效快速的预测空中交通流量。