期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
基于随机提示的中文法律领域命名实体识别
1
作者 周鹏 何军 《计算机工程与设计》 北大核心 2025年第4期1167-1173,共7页
为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息... 为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息,结合BERT和BiLSTM,学习文本中融合实体类型解释信息的上下文语义特征。将命名实体识别任务建模为序列标注任务,通过CRF获取序列的标签信息。实验结果表明,该方法在中文法律领域命名实体识别任务中取得了显著的性能提升,F1值达到93.06%。 展开更多
关键词 中文法律实体 深度学习 命名实体识别 随机提示 双向长短时记忆网络 序列标注 条件随机场
在线阅读 下载PDF
融合数据增强的互花米草入侵关联要素实体识别方法
2
作者 李忠伟 张文丰 +1 位作者 李永 李明轩 《计算机工程与设计》 北大核心 2025年第2期603-609,共7页
为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要... 为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要素的上下文信息;使用BiLSTM进一步提取特征,利用CRF得到实体的标签约束。通过对比不同模型在自建数据集上的精确率、召回率和F1分数,验证了该模型在互花米草入侵领域实体识别的有效性。 展开更多
关键词 命名实体识别 互花米草入侵 深度学习 数据增强 预训练模型 双向长短期记忆网络 条件随机场
在线阅读 下载PDF
南美白对虾养殖领域中文命名实体识别数据集构建
3
作者 彭小红 邓峰 余应淮 《计算机工程与应用》 北大核心 2025年第9期353-362,共10页
该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家... 该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家讨论实体类型,并经过专业培训的标注人员使用IOB2标注格式进行标注,标注过程分为预标注和正式标注两个阶段以提高效率。在预标注阶段,标注者间一致性(inter-annotation agreement,IAA)达到0.87,表明标注人员的一致性较高。最终,VamNER包含6115个句子,总字符数达384602,涵盖10个实体类型,共有12814个实体。研究通过与多个通用领域数据集和一个特定领域数据集进行比较,揭示了VamNER的独特特性。在实验中使用了预训练的基于变换器的双向编码器表示(bidirectional encoder representations from Transformers,BERT)模型、双向长短期记忆神经网络(bidirectional long short-term memory network,BiLSTM)和条件随机场模型(conditional random fields,CRF),最优模型在测试集上的F1值达到82.8%。VamNER成为首个专注于南美白对虾养殖领域的NER数据集,为中文特定领域NER研究提供了丰富资源,有望推动水产养殖领域NER研究的发展。 展开更多
关键词 命名实体识别 VamNER数据集 标注者间一致性(IAA) 基于变换器的双向编码器表示(BERT) 双向长短期记忆神经网络(BiLSTM) 条件随机场(CRF)
在线阅读 下载PDF
基于多路局部特征整合的嵌套命名实体识别方法
4
作者 王进 蒋诗琪 《江苏大学学报(自然科学版)》 北大核心 2025年第4期431-437,共7页
为了解决嵌套命名实体识别中边界模糊和嵌套实体提取困难的问题,提出了基于多路局部特征整合的嵌套命名实体识别方法.新方法先采用双向长短时记忆网络拆解序列的正反向特征,然后按实体长度对嵌套命名实体识别任务进行拆分,使用不同大小... 为了解决嵌套命名实体识别中边界模糊和嵌套实体提取困难的问题,提出了基于多路局部特征整合的嵌套命名实体识别方法.新方法先采用双向长短时记忆网络拆解序列的正反向特征,然后按实体长度对嵌套命名实体识别任务进行拆分,使用不同大小的卷积网络对固定长度的局部信息进行整合,最后将正反向特征进行匹配得到预测结果.引入前置加权方法来解决多层模型中层间信息传递误差大的问题.将新方法与其他的嵌套命名实体识别方法在ACE2005和GENIA两个数据集上进行对比试验.结果表明:新方法在两个数据集上均表现出了更好的效果,比其他方法中最优的Dependency Parsing在ACE2005和GENIA数据集上F_(1)分数分别提升0.18和0.03百分点,新方法相比目前主流方法有一定的性能提升. 展开更多
关键词 自然语言处理 嵌套命名实体识别 深度学习 卷积神经网络 长短时记忆网络 特征融合 自适应学习
在线阅读 下载PDF
基于规则的天然气净化典型设备知识抽取方法
5
作者 纪天浩 彭传波 +3 位作者 裴爱霞 周健 刘持强 李大字 《石油与天然气化工》 北大核心 2025年第3期146-152,共7页
目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持... 目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持,提升运维效率。但现有生产运维资料多为非结构化文本,限制了知识图谱的构建。针对此问题,提出了一种双向长短期记忆网络(BiLSTM)与条件随机场(CRF)融合规则匹配的知识抽取方法。方法 首先采集工业过程的生产资料或运维资料,作为原始数据并进行预处理,接下来利用BiLSTM-CRF和规则匹配相结合的方法进行知识抽取,将抽取的数据存储于图数据库中。结果 以天然气净化厂闪蒸罐为例,使用该方法构建的知识图谱与专家经验构建的理论图谱结构基本一致。结论 实验结果表明,所提出的模型能有效地提取装置的生产资料或运维资料中的知识。构建的知识图谱增强了资料的可读性,便于运维人员查询和学习。 展开更多
关键词 天然气净化 长短时记忆网络 条件随机场 命名实体识别 知识抽取 知识图谱
在线阅读 下载PDF
基于位置增强和对抗训练的中文短文本实体消歧
6
作者 曾伟 奚雪峰 崔志明 《印刷与数字媒体技术研究》 北大核心 2025年第5期48-57,共10页
实体消歧作为自然语言处理领域的关键问题之一,对于文本理解和信息检索具有重要意义。因短文本语境信息有限、表达不规范以及语法结构不完整,短文本实体消歧方法准确率较低。为此,本研究提出了一种基于位置增强和对抗训练的中文短文本... 实体消歧作为自然语言处理领域的关键问题之一,对于文本理解和信息检索具有重要意义。因短文本语境信息有限、表达不规范以及语法结构不完整,短文本实体消歧方法准确率较低。为此,本研究提出了一种基于位置增强和对抗训练的中文短文本实体消歧方法。首先,在文本编码层引入位置增强机制,以加强实体消歧过程中对实体在文本中位置的考量,从而提高消歧精度。然后,通过双路网络处理获得的文本表示,利用PCNN模型获取句子依赖特征,利用GCN模型获取语义特征,融合二者的语义信息完成消歧任务。在此基础上,采用对抗训练技术,在编码后的文本表示中添加扰动,使模型能够充分学习文本中微妙的语义特征,以增强模型的泛化能力和鲁棒性。实验结果表明,本研究方法在CCKS2019数据集上达到了75.94%的精确率,验证了其在解决中文短文本实体消歧任务中的有效性和可行性。 展开更多
关键词 短文本 实体消歧 位置增强 卷积网络
在线阅读 下载PDF
基于并联残差膨胀卷积网络的短文本实体关系联合抽取
7
作者 曾伟 奚雪峰 崔志明 《现代电子技术》 北大核心 2025年第2期169-178,共10页
关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题... 关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题。为此,文中提出一种基于并联残差膨胀卷积网络的短文本实体关系联合抽取方法。该方法利用BERT生成语义特征信息,采用并联残差膨胀卷积网络来捕获语义信息,从而提升上下文信息的捕获能力并缓解噪声。联合抽取框架通过抽取潜在关系来过滤无关关系,然后再抽取实体以预测三元组,从而解决关系冗余和重叠问题,并提高计算效率。实验结果表明,与现有的主流模型相比,所提模型在三个公共数据集NYT、WebNLG和DuIE上的F1值分别为90.9%、91.3%和73.5%,相较于基线模型均有提升,验证了该模型的有效性。 展开更多
关键词 实体关系抽取 短文本 残差膨胀卷积网络 语义特征 联合抽取 BERT编码器
在线阅读 下载PDF
部首感知的中文医疗命名实体识别 被引量:15
8
作者 李丹 徐童 +2 位作者 郑毅 王喆锋 陈恩红 《中文信息学报》 CSCD 北大核心 2020年第12期54-64,共11页
人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究... 人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移到医疗领域的实体类型中,分析效果较为有限。针对这一问题,该文设计了长短期记忆网络与条件随机场的联合模型并引入BERT模型;在此基础之上,考虑到医疗领域命名实体鲜明的部首特征,通过将部首信息编码到字向量中,并且结合部首信息修改条件随机场层得分函数的计算方式,有效地提升了医疗领域命名实体的抽取能力。通过两项电子病历数据集的实验结果表明,该文提出的模型整体效果略高于通用的实体识别模型,并对疾病诊断等特定类型的实体词的识别效果具有较为明显的提升。 展开更多
关键词 命名实体识别 长短期记忆网络 条件随机场 BERT
在线阅读 下载PDF
融合知识感知与双重注意力的短文本分类模型 被引量:28
9
作者 李博涵 向宇轩 +4 位作者 封顶 何志超 吴佳骏 戴天伦 李静 《软件学报》 EI CSCD 北大核心 2022年第10期3565-3581,共17页
文本分类任务作为文本挖掘的核心问题,已成为自然语言处理领域的一个重要课题.而短文本分类由于稀疏性、实时性和不规范性等特点,已成为文本分类亟待解决的问题之一.在某些特定场景,短文本存在大量隐含语义,由此给挖掘有限文本内的隐含... 文本分类任务作为文本挖掘的核心问题,已成为自然语言处理领域的一个重要课题.而短文本分类由于稀疏性、实时性和不规范性等特点,已成为文本分类亟待解决的问题之一.在某些特定场景,短文本存在大量隐含语义,由此给挖掘有限文本内的隐含语义特征等任务带来挑战.已有的方法对短文本分类主要采用传统机器学习或深度学习算法,但该类算法的模型构建复杂且工作量大,效率不高.此外,短文本包含有效信息较少且口语化严重,对模型的特征学习能力要求较高.针对以上问题,提出了KAe RCNN模型,该模型在TextRCNN模型的基础上,融合了知识感知与双重注意力机制.知识感知包含了知识图谱实体链接和知识图谱嵌入,可以引入外部知识以获取语义特征,同时,双重注意力机制可以提高模型对短文本中有效信息提取的效率.实验结果表明,KAe RCNN模型在分类准确度、F1值和实际应用效果等方面显著优于传统的机器学习算法.对算法的性能和适应性进行了验证,准确率达到95.54%,F1值达到0.901,对比4种传统机器学习算法,准确率平均提高了约14%,F1值提升了约13%.与TextRCNN相比,KAe RCNN模型在准确性方面提升了约3%.此外,与深度学习算法的对比实验结果也说明,该模型在其他领域的短文本分类中也有较好的表现.理论和实验结果都证明,所提出的KAe RCNN模型对短文本分类效果更优. 展开更多
关键词 短文本分类 知识图谱 注意力机制 TextRCNN 实体消歧
在线阅读 下载PDF
结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别 被引量:35
10
作者 罗熹 夏先运 +1 位作者 安莹 陈先来 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期45-55,共11页
命名实体是电子病历中相关医学知识的主要载体,因此,临床命名实体识别(Clinical Named Entity Recognition,CNER)也就成为了临床文本分析处理的基础性任务之一.由于文本结构和语言等方面的特殊性,面向中文电子病历(Electronic Medical R... 命名实体是电子病历中相关医学知识的主要载体,因此,临床命名实体识别(Clinical Named Entity Recognition,CNER)也就成为了临床文本分析处理的基础性任务之一.由于文本结构和语言等方面的特殊性,面向中文电子病历(Electronic Medical Records,EMRs)的临床命名实体识别依然存在着巨大的挑战.本文提出了一种基于多头自注意力神经网络的中文临床命名实体识别方法.该方法使用了一种新颖的融合领域词典的字符级特征表示方法,并在BiLSTM-CRF模型的基础上,结合多头自注意力机制来准确地捕获字符间潜在的依赖权重、语境和语义关联等多方面的特征,从而有效地提升了中文临床命名实体的识别能力.实验结果表明本文方法超过现有的其他方法获得了较优的识别性能. 展开更多
关键词 中文电子病历 命名实体识别 长短期记忆 多头自注意力
在线阅读 下载PDF
基于多特征自注意力BLSTM的中文实体关系抽取 被引量:28
11
作者 李卫疆 李涛 漆芳 《中文信息学报》 CSCD 北大核心 2019年第10期47-56,72,共11页
实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了... 实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016Task 3和英文SemEval 2010Task 8数据集上的实验表明该方法表现出了较好的性能。 展开更多
关键词 实体关系抽取 自注意力 双向长短期记忆网络 多特征
在线阅读 下载PDF
基于深度学习的简历信息实体抽取方法 被引量:7
12
作者 黄胜 李伟 张剑 《计算机工程与设计》 北大核心 2018年第12期3873-3878,共6页
针对传统的简历信息实体抽取方法泛化能力差、难以维护的问题,提出一种基于深层神经网络的简历信息实体抽取方法。经过数据清洗、分词等预处理将非结构化的简历文本信息处理为词序列,通过由Word2Vec在大规模语料库以无监督方式训练得到... 针对传统的简历信息实体抽取方法泛化能力差、难以维护的问题,提出一种基于深层神经网络的简历信息实体抽取方法。经过数据清洗、分词等预处理将非结构化的简历文本信息处理为词序列,通过由Word2Vec在大规模语料库以无监督方式训练得到的词向量表,将每个词映射为低维实数向量,由双向LSTM层融合待标注词所处的语境信息,输出所有可能标签序列的分值给CRF层,由其引入前后标签之间的约束求解最优标签序列,以随机梯度下降法训练该模型,辅以Dropout防止过拟合。实验结果表明,该方法提升了相应的解析标注性能,提高了泛化能力。 展开更多
关键词 简历抽取 信息实体 序列标注 长短期记忆 条件随机场
在线阅读 下载PDF
基于层级残差连接LSTM的命名实体识别 被引量:11
13
作者 王进 李颖 +2 位作者 蒋晓翠 吕晓旭 肖黄清 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第4期446-452,共7页
针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加... 针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加强网络计算能力的同时降低了参数量;通过注意力机制,对输入动态调整残差连接的层数加强模型拟合能力.给出了残差网络和Dynamic ReLU激活函数,建立了基于层级残差连接的LSTM命名实体识别整体框架,定义了残差连接模块、Dynamic ReLU模块、注意力机制模块.对比了所提出方法与FLAT、Lattice LSTM等相关算法,在Weibo和Resume数据集上进行试验.结果表明,基于层级残差连接的LSTM在Weibo上达到了最好的效果,在Resume上效果仅次于FLAT,F_(1)分别为0.7001、0.9586. 展开更多
关键词 命名实体识别 短期信息特征 LSTM 残差连接 Dynamic ReLU 注意力机制
在线阅读 下载PDF
面向短文本的命名实体识别 被引量:18
14
作者 王丹 樊兴华 《计算机应用》 CSCD 北大核心 2009年第1期143-145,171,共4页
针对短文本命名实体识别这项紧缺任务,提出了一种面向短文本的快速有效的命名实体识别方法。该方法主要分成三步:第一步,针对短文本表达不规范特性对命名实体识别的干扰,采取去干扰字符,化繁为简等规范化操作。第二步,针对短文本语意不... 针对短文本命名实体识别这项紧缺任务,提出了一种面向短文本的快速有效的命名实体识别方法。该方法主要分成三步:第一步,针对短文本表达不规范特性对命名实体识别的干扰,采取去干扰字符,化繁为简等规范化操作。第二步,针对短文本语意不完整特性,提出用HMM(隐马尔可夫模型)以词性做观察值进行初步命名实体识别。第三步,据初步识别结果,构建拼音同指关系库来识别潜在实体。在由8464篇短文本构成的测试集上运行的实验表明,该方法能较好地进行短文本命名实体识别。 展开更多
关键词 短文本 隐马尔可夫模型 命名实体识别 拼音同指关系库 词性
在线阅读 下载PDF
整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别 被引量:34
15
作者 李纲 潘荣清 +1 位作者 毛进 操玉杰 《现代情报》 CSSCI 2020年第4期3-12,58,共11页
[目的/意义]通过整合BiLSTM-CRF神经网络和具有先验领域知识的词典资源,提高中文电子病历领域中的实体识别效果。[方法/过程]采用BiLSTM-CRF神经网络模型,以CCKS-2017测评任务提供的脱敏中文电子病历数据为实验数据集,结合Word2Vec和外... [目的/意义]通过整合BiLSTM-CRF神经网络和具有先验领域知识的词典资源,提高中文电子病历领域中的实体识别效果。[方法/过程]采用BiLSTM-CRF神经网络模型,以CCKS-2017测评任务提供的脱敏中文电子病历数据为实验数据集,结合Word2Vec和外部词典构造神经网络的词嵌入输入改进实体识别模型。[结果/结论]与传统的CRF和单纯的BiLSTM-CRF模型相比,引入先验知识的词典资源可以取得更好的实体识别效果,F1值达到最高的90.41%。深度学习模型BiLSTM-CRF能够显著提升传统CRF方法的实体识别效果,同时先验的词典知识能进一步增强神经网络的性能。 展开更多
关键词 实体识别 长短期记忆网络 条件随机场 电子病历 词典资源 深度学习 BiLSTM-CRF神经网络模型
在线阅读 下载PDF
加入自注意力机制的BERT命名实体识别模型 被引量:28
16
作者 毛明毅 吴晨 +1 位作者 钟义信 陈志成 《智能系统学报》 CSCD 北大核心 2020年第4期772-779,共8页
命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对... 命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。 展开更多
关键词 命名实体识别 BERT 自注意力机制 深度学习 条件随机场 自然语言处理 双向长短期记忆网络 序列标注
在线阅读 下载PDF
基于BERT的高校图书馆微信信息服务的命名实体识别方法 被引量:4
17
作者 李东升 鲍玉来 +1 位作者 刘建华 陈德旺 《现代情报》 CSSCI 2023年第4期64-76,共13页
[目的/意义]微信服务推文信息的命名实体识别是高校图书馆智慧服务领域的重要研究方向。在目前微信服务推文的命名实体识别领域中,存在高校图书馆微信服务领域的实体名称多样、特征信息提取不明确等问题。[方法/过程]针对以上问题,本文... [目的/意义]微信服务推文信息的命名实体识别是高校图书馆智慧服务领域的重要研究方向。在目前微信服务推文的命名实体识别领域中,存在高校图书馆微信服务领域的实体名称多样、特征信息提取不明确等问题。[方法/过程]针对以上问题,本文通过挖掘高校图书馆服务领域的微信服务推文文本,采用现有知识库和词典规则扩充句子语义信息,并在领域专家的指导下构建了一种高校图书馆微信服务推文文本的命名实体语料集ULICNER,实验数据集包含36035条文本语料数据,7大类16个小类。采用基于BERT-BiLSTM-CRF的模型研究高校图书馆微信推文文本的命名实体识别方法。该模型利用BERT网络将大规模文本生成具有语义特征的字符向量,接着对输入文本序列通过BiLSTM获取文本特征,最后连接CRF获得最佳的序列标记输出。[结果/结论]实验结果表明,本文模型在构建的数据集上取得良好的效果,其F1值为98.75%,准确率值为98.59%,召回率值为98.91%,模型可以运用于高校图书馆信息服务的实体识别任务。 展开更多
关键词 命名实体识别 高校图书馆 微信服务 BERT 双向长短记忆网络 条件随机场
在线阅读 下载PDF
基于迁移学习的细粒度实体分类方法的研究 被引量:11
18
作者 冯建周 马祥聪 《自动化学报》 EI CSCD 北大核心 2020年第8期1759-1766,共8页
细粒度实体分类(Fine-grained entity type classification,FETC)旨在将文本中出现的实体映射到层次化的细分实体类别中.近年来,采用深度神经网络实现实体分类取得了很大进展.但是,训练一个具备精准识别度的神经网络模型需要足够数量的... 细粒度实体分类(Fine-grained entity type classification,FETC)旨在将文本中出现的实体映射到层次化的细分实体类别中.近年来,采用深度神经网络实现实体分类取得了很大进展.但是,训练一个具备精准识别度的神经网络模型需要足够数量的标注数据,而细粒度实体分类的标注语料非常稀少,如何在没有标注语料的领域进行实体分类成为难题.针对缺少标注语料的实体分类任务,本文提出了一种基于迁移学习的细粒度实体分类方法,首先通过构建一个映射关系模型挖掘有标注语料的实体类别与无标注语料实体类别间的语义关系,对无标注语料的每个实体类别,构建其对应的有标注语料的类别映射集合.然后,构建双向长短期记忆(Bidirectional long short term memory,BiLSTM)模型,将代表映射类别集的句子向量组合作为模型的输入用来训练无标注实体类别.基于映射类别集中不同类别与对应的无标注类别的语义距离构建注意力机制,从而实现实体分类器以识别未知实体分类.实验证明,我们的方法取得了较好的效果,达到了在无任何标注语料前提下识别未知命名实体分类的目的. 展开更多
关键词 细粒度实体分类 迁移学习 双向长短期记忆模型 注意力 机制
在线阅读 下载PDF
基于交互式特征融合的嵌套命名实体识别 被引量:3
19
作者 廖涛 黄荣梅 +1 位作者 张顺香 段松松 《计算机工程》 CAS CSCD 北大核心 2022年第12期119-126,133,共9页
现有命名实体识别模型在字嵌入过程中多采用字符向量、字向量等不同单词表示向量的拼接或累加方式提取信息,未考虑不同单词表示特征之间的相互依赖关系,导致单词内部特征信息获取不足。提出一种基于交互式特征融合的嵌套命名实体识别模... 现有命名实体识别模型在字嵌入过程中多采用字符向量、字向量等不同单词表示向量的拼接或累加方式提取信息,未考虑不同单词表示特征之间的相互依赖关系,导致单词内部特征信息获取不足。提出一种基于交互式特征融合的嵌套命名实体识别模型,通过交互的方式构建不同特征之间的通信桥梁,以捕获多特征之间的依赖关系。采用交互机制得到包含不同单词表示信息的字嵌入向量,基于双向长短时记忆网络提取单词的表示特征,并对不同单词的表示特征进行交互,捕获特征之间的相互依赖关系。为进一步提取序列特征的上下文信息,采用基于特征交互的多头注意力机制捕获句子上下文的依赖关系。在此基础上,采用二元序列标记法过滤非实体区域,得到粗粒度候选区间,并对其进行细粒度划分以判断实体类别。实验结果表明,该模型的召回率和F1值为72.4%和71.2%,相比现有的嵌套命名实体识别模型,F1值平均提高了1.72%。 展开更多
关键词 嵌套命名实体识别 双向长短时记忆网络 特征交互 多头注意力 候选区间
在线阅读 下载PDF
基于双向编码器表示模型和注意力机制的食品安全命名实体识别 被引量:14
20
作者 姜同强 王岚熙 《科学技术与工程》 北大核心 2021年第3期1103-1108,共6页
针对于目前传统的命名实体识别模型在食品案件纠纷裁判文书领域的准确率不足的问题,在双向长短时记忆网络的基础上提出一种基于双向编码器表示模型(bidirectional encoder representations from transformers, Bert)和注意力机制的命名... 针对于目前传统的命名实体识别模型在食品案件纠纷裁判文书领域的准确率不足的问题,在双向长短时记忆网络的基础上提出一种基于双向编码器表示模型(bidirectional encoder representations from transformers, Bert)和注意力机制的命名实体识别模型。模型通过Bert层进行字向量预训练,根据上下文语意生成字向量,字向量序列输入双向长短期记忆网络(bi-directional long short-term memory, BiLSTM)层和Attention层提取语义特征,再通过条件随机场(conditional random field, CRF)层预测并输出字的最优标签序列,最终得到食品案件纠纷裁判文书中的实体。实验表明,该模型在食品纠纷法律文书上面的准确率和F1值分别达到了92.56%和90.25%,准确率相较于目前应用最多的BiLSTM-CRF模型提升了6.76%。Bert-BiLSTM-Attention-CRF模型通过对字向量的预训练,充分结合上下文语意,能够有效克服传统命名实体识别模型丢失字的多义性的问题,提高了食品案件纠纷裁判文书领域命名实体识别的准确率。 展开更多
关键词 命名实体识别 字向量 裁判文书 双向长短时记忆网络 条件随机场
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部