期刊文献+
共找到904篇文章
< 1 2 46 >
每页显示 20 50 100
基于分量感知动态图Transformer的短期电力负荷预测 被引量:4
1
作者 朱莉 高靖凯 +1 位作者 朱春强 邓凡 《计算机应用研究》 北大核心 2025年第2期381-390,共10页
准确的短期负荷预测对于电力系统的稳定运行和有效调度至关重要。电力负荷数据因存在非线性、非平稳性而导致预测精度低。分解可以降低序列非平稳性的影响从而有效地提高预测精度,但现有分解预测方法缺乏对分解分量间关系的捕获且显著... 准确的短期负荷预测对于电力系统的稳定运行和有效调度至关重要。电力负荷数据因存在非线性、非平稳性而导致预测精度低。分解可以降低序列非平稳性的影响从而有效地提高预测精度,但现有分解预测方法缺乏对分解分量间关系的捕获且显著增加了预测时间。为此,提出分量感知动态图Transformer(component-aware dynamic graph Transformer,CDGT)模型。首先,引入联合对立选择(joint opposite selection,JOS)算子和随机扰动改进雪消融优化算法(snow ablation optimizer,SAO),使用联合搜索和随机扰动的SAO(jointly searched and stochastic perturbed SAO,JSSAO)对变分模态分解(variational mode decomposition,VMD)进行参数寻优。VMD对原始的负荷数据进行分解得到不同频率的分量序列,然后使用图神经网络(graph neural network,GNN)来识别和建模分量之间的复杂关系。同时,使用引入频域指数滑动平均(exponential moving average,EMA)注意力的Transformer来学习分量内部的依赖关系。一次输出所有分量结果,线性相加后得到负荷预测值。通过两个公开负荷数据集的实验表明,CDGT优于一系列先进的基线以及分解预测方法,在澳大利亚数据集和摩洛哥数据集上,MAE分别降低了5.51%~31.08%和15.02%~75.49%。 展开更多
关键词 短期负荷预测 雪消融优化算法 变分模态分解 GNN关系建模 注意力机制
在线阅读 下载PDF
基于域对抗迁移网络的短期电力负荷预测方法
2
作者 缪希仁 刘煜寒 +4 位作者 王铭海 江灏 陈静 林蔚青 陈熙 《电网技术》 北大核心 2025年第9期3745-3755,I0071,共12页
基于数据驱动的方法已广泛应用于电力负荷预测领域,以提升预测精度。然而,当售电公司接入新用户时,由于缺乏用户历史用电数据,常规数据驱动方法的适用性会受到一定限制。为解决这一问题,文章提出了一种基于域对抗迁移网络(domain advers... 基于数据驱动的方法已广泛应用于电力负荷预测领域,以提升预测精度。然而,当售电公司接入新用户时,由于缺乏用户历史用电数据,常规数据驱动方法的适用性会受到一定限制。为解决这一问题,文章提出了一种基于域对抗迁移网络(domain adversarial transfer network,DATN)的短期电力负荷预测方法。该模型利用Transformer模型作为特征提取器,以捕捉负荷数据中的动态特征和时间依赖性。随后,负荷预测器基于这些特征精准预测未来的负荷情况。通过域判别器与特征提取器的对抗学习,确保模型能够学习到深层域不变特征,同时结合多核最大均值差异(multi-kernel maximum mean discrepancy,MK-MMD)和相关性对齐(correlation alignment,CORAL)进一步减小源域与目标域数据的分布差异。所提模型在南方某省工业用户的用电数据上进行了验证,实验结果表明,在小样本场景下,该方法具备较好的预测精度和场景适应性。 展开更多
关键词 短期负荷预测 迁移学习 Transformer模型 领域自适应
在线阅读 下载PDF
基于多尺度二次特征提取的短期电力负荷预测模型
3
作者 李楠 金淳熙 +1 位作者 陶亮 黄亮 《电力系统保护与控制》 北大核心 2025年第19期114-126,共13页
为充分挖掘电力负荷固有多尺度特征(multi-scale feature,MSF)间的复杂时序关系,进一步提升电力负荷预测模型性能,特别是提升对节假日负荷预测的能力,提出了一种基于多尺度二次特征提取的短期电力负荷预测模型。首先,利用Prophet算法的... 为充分挖掘电力负荷固有多尺度特征(multi-scale feature,MSF)间的复杂时序关系,进一步提升电力负荷预测模型性能,特别是提升对节假日负荷预测的能力,提出了一种基于多尺度二次特征提取的短期电力负荷预测模型。首先,利用Prophet算法的拟合分解功能,获取不同尺度下的负荷数据分量,并与强相关的天气数据共同构建多元数据集。其次,采用改进的特征金字塔网络(improved feature pyramid network,IFPN)匹配负荷数据的多尺度特性,并设计了卷积特征增强模块强化对节假日特征的表达能力,实现MSF的第一次提取。基于时间卷积神经网络的优势,深度挖掘一次特征间的时序依赖关系,引入SENet对特征的权重实现自适应赋值,同时完成MSF的二次提取。最后,利用鱼鹰算法优化后的Transformer模型完成负荷预测。在国内外两套负荷数据集上进行了验证,仿真结果表明所提模型的预测效果优于对比模型,特别是在对节假日负荷的预测精度上有所提高。 展开更多
关键词 短期电力负荷预测 Prophet算法 二次特征提取 改进的特征金字塔网络 多尺度时间卷积网络
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
4
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于人体舒适度指数的高峰季节空调负荷预测方法
5
作者 韩平平 丁静雅 +3 位作者 吴红斌 仇茹嘉 徐斌 吴家毓 《太阳能学报》 北大核心 2025年第3期141-150,共10页
提出一种基于综合人体舒适度指数的高峰季节空调负荷预测方法,从而获得更加准确的空调负荷数据参与电网调控。首先,考虑到不同季节的负荷增量影响和数据样本范围,分别利用最大负荷比较法和基准负荷比较法得到更具可信度的空调负荷数据;... 提出一种基于综合人体舒适度指数的高峰季节空调负荷预测方法,从而获得更加准确的空调负荷数据参与电网调控。首先,考虑到不同季节的负荷增量影响和数据样本范围,分别利用最大负荷比较法和基准负荷比较法得到更具可信度的空调负荷数据;其次,计算包含温度、相对湿度和风速指标的主客观综合权重,构建考虑时空分布特性的人体舒适度模型,并验证其与空调负荷之间的关联性;最后,基于综合人体舒适度指数提取建模样本数据,并将其作为神经网络的输入,建立空调负荷预测模型。理论分析和算例验证表明所提方法在不同情景下可有效提高空调负荷预测精度。 展开更多
关键词 分布式发电 空调 负荷预测 人体舒适度指数 双向长短期记忆网络
在线阅读 下载PDF
基于奇异谱分析和双向LSTM的多元负荷同时预测
6
作者 刘永福 张天颖 +1 位作者 霍殿阳 张立梅 《科学技术与工程》 北大核心 2025年第19期8099-8107,共9页
开展多元负荷的准确预测对提高新能源消纳、实现节能减排、确保电网安全可靠运行具有重要意义。为了提高多元负荷同时预测的精度,构建了奇异谱分析与双向长短期记忆网络相结合的多元负荷同时预测模型。首先,利用皮尔逊相关系数进行耦合... 开展多元负荷的准确预测对提高新能源消纳、实现节能减排、确保电网安全可靠运行具有重要意义。为了提高多元负荷同时预测的精度,构建了奇异谱分析与双向长短期记忆网络相结合的多元负荷同时预测模型。首先,利用皮尔逊相关系数进行耦合特征提取,以识别多元负荷数据中的内在关联和依赖关系;其次,使用奇异谱分析进行特征提取,以便更全面地捕捉多元负荷数据的动态特性,降低预测难度。最后,针对所提模型引入多任务学习,利用多个负荷预测任务之间的共享信息,相互辅助进行预测,提升预测精度。实验分别通过多区域多元负荷和柔性负荷及风光发电数据进行仿真分析,结果表明,在多区域中电、热、冷负荷预测平均绝对百分比误差平均提高0.41%,均方根误差平均提高0.02 MW。 展开更多
关键词 多元负荷同时预测 奇异谱分析 双向长短期记忆网络 多任务学习模型 皮尔逊相关系数
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
7
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于STGCN-Transformer的短期电力净负荷预测
8
作者 孟伟 俞斌 +3 位作者 白隆 徐婕 顾晋豪 郭锋 《中国测试》 北大核心 2025年第6期160-169,共10页
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题... 智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。 展开更多
关键词 时空图卷积网络 TRANSFORMER 多头注意力机制 短期净负荷预测
在线阅读 下载PDF
基于动态多尺度与双重注意力的短期电力负荷预测
9
作者 朱莉 高靖凯 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第10期369-380,共12页
短期电力负荷预测在电力系统的优化调度和安全运行中具有至关重要的作用。电力负荷数据具有多周期特性,在不同时间尺度上表现出不同的模式和趋势,准确提取尺度大小有助于识别和分离这些特征。目前方法通过使用一个或一组固定的patch长... 短期电力负荷预测在电力系统的优化调度和安全运行中具有至关重要的作用。电力负荷数据具有多周期特性,在不同时间尺度上表现出不同的模式和趋势,准确提取尺度大小有助于识别和分离这些特征。目前方法通过使用一个或一组固定的patch长度作为步长,将称之为patches的片段来编码时间序列,但其无法适应现实世界负荷序列数据的复杂的动态变化。为此,提出一种基于动态多尺度与双重注意力的预测模型(MDAT)。首先,利用逐次变分模态分解(SVMD)分离负荷序列不同的时间模式,通过快速傅里叶变换(FFT)提取出每个模式的显著周期。其次,根据检测到的显著周期,将负荷序列以不同大小的patch划分为不同的时间分辨率,使用Transformer的多个分支同时建模不同尺度分割序列的依赖关系。然后,对这些patches进行双重注意力,以捕获全局相关性和局部细节。最后,对每个分支的输出进行非线性特征融合,通过堆叠多层Transformer模块得到最终的负荷预测结果。在两个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,相比最新的基于Transformer及多层感知器(MLP)的模型,在Australia数据集和Morocco数据集上平均绝对误差(MAE)分别降低了10.26%~17.06%和9.08%~70.25%。 展开更多
关键词 短期负荷预测 逐次变分模态分解 多尺度特征 双重注意力 Transformer模块
在线阅读 下载PDF
基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测 被引量:1
10
作者 陈宇航 王渝红 +3 位作者 南璐 何川 王腾鑫 张敏 《现代电力》 北大核心 2025年第2期352-359,共8页
为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到... 为提高电力系统短期负荷预测精度,充分挖掘历史数据中的多维度信息,更好地克服历史数据缺失带来的不利影响,提出一种基于自组织映射-前馈神经网络和先知混合模型的短期负荷预测方法。首先通过SOM神经网络对历史非功率数据聚类计算得到相似日集合,而后采用相似日数据对BP神经网络进行训练得到单点负荷值预测结果。其次,重点考虑历史数据的周期性和时序变化趋势,基于Prophet时序模型对历史负荷数据进行周期非线性拟合。通过历史数据拟合误差反馈,调整优化模型的关键超参数,最后基于误差倒数法组合得到短期负荷预测结果。以某地区电力负荷数据作为算例验证,结果表明所提的改进预测模型预测精度更高,且在克服历史数据缺失和拟合非工作日负荷曲线等方面具有优势。 展开更多
关键词 短期负荷预测 PROPHET 自组织映射-前馈 神经网络 时间序列
在线阅读 下载PDF
基于ALIF-VMD二次分解的NGO-CNN-LSTM电力负荷短期组合预测模型 被引量:1
11
作者 张琳 高胜强 +2 位作者 宋煜 卜帅羽 余伟 《科学技术与工程》 北大核心 2025年第11期4583-4597,共15页
针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍... 针对电力负荷预测过程中普遍存在的负荷波动变化趋势明显、随机性强,以及预测模型的参数取值不合理导致的精度偏低问题,提出了一种基于ALIF-VMD(adaptive local iterative filtering-variational mode decomposition)二次分解和北方苍鹰优化算法(northern goshawk optimization, NGO)优化CNN-LSTM(convolutional neural networks-long short-term memory)的电力负荷组合预测模型,在使用交叉映射收敛方法(convergent cross-mapping, CCM)准确识别电力负荷的关键影响因素的基础上,创新性地联合使用ALIF、基于NGO的VMD和模糊熵(fuzzy entropy, FE)对原始负荷序列进行组合分解和必要的重组;针对分解和重组后生成的模态分量,结合NGO确定的CNN-LSTM模型最优超参数组合,建立预测精度高、训练时间短、收敛速度快的NGO-CNN-LSTM日前电力负荷组合预测模型。与其他基准模型的对比结果表明,该模型具有更好的适应性和预测精度,可为电力系统的安全、可靠、经济运行提供重要的技术支撑。 展开更多
关键词 负荷预测 序列分解与重组 北方苍鹰算法 卷积神经网络-长短期记忆神经网络模型
在线阅读 下载PDF
基于长短期记忆网络模型的联邦学习居民负荷预测 被引量:2
12
作者 朱嵩阳 张歌 +1 位作者 贾愉靖 白晓清 《现代电力》 北大核心 2025年第1期129-136,共8页
居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信... 居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信成本增加,并引发信息安全问题。基于联邦学习框架,采用长短期记忆网络对居民负荷预测方法进行研究。利用真实居民负荷数据进行仿真计算分析,结果表明,基于联邦学习的居民负荷预测准确率和计算效率优于集中式。此外,将FedAvg、FedAdagrad、FedYogi三种联邦学习策略进行比较,采用具有自适应优化功能的FedAdagrad联邦学习策略对居民负荷预测的准确率更高,收敛性更强。 展开更多
关键词 居民用户 集中式 联邦学习 负荷预测 长短期记忆网络
在线阅读 下载PDF
计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测 被引量:3
13
作者 黄南天 孙赫宏 +3 位作者 王圣元 蔡国伟 张良 王日俊 《中国电机工程学报》 北大核心 2025年第4期1424-1435,I0016,共13页
现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网... 现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网络的多公共充电站充电负荷时-空短期预测方法。首先,通过快速最大信息系数构建含有日期、气象以及历史负荷特征的多节点特征集。并通过数据自适应图生成,构建动态相似权时-空图,实现多公共充电站空间连接关系重构。然后,构建图卷积层,差异化生成各节点的空间聚合特征,实现全域充电节点差异化特征增强。同时,通过节点自适应参数学习方法学习不同充电节点的充电模式。最后,通过门控循环单元层挖掘空间聚合特征的时域特征。所提出的公共充电站充电负荷时-空预测方法相应的对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)和平均绝对误差(mean absolute error,MAE)分别为12.95%和31.72 kW。 展开更多
关键词 充电负荷时-空短期预测 多公共充电站 图神经网络 自适应图生成 差异化时空耦合关联 节点自适应参数学习
在线阅读 下载PDF
基于模糊逻辑的FBiLSTM-Attention短期负荷预测 被引量:1
14
作者 张岩 康泽鹏 +2 位作者 高晓芝 杨楠 王昭雷 《河北科技大学学报》 北大核心 2025年第1期41-48,共8页
针对电力负荷数据由于受多种因素的影响具有高度不确定性的问题,将负荷数据的不确定性与深度学习算法相结合,提出了一种基于模糊逻辑的FBiLSTM-Attention短期负荷预测模型,以提高负荷预测的精度。首先,对原始数据进行数据预处理,包括缺... 针对电力负荷数据由于受多种因素的影响具有高度不确定性的问题,将负荷数据的不确定性与深度学习算法相结合,提出了一种基于模糊逻辑的FBiLSTM-Attention短期负荷预测模型,以提高负荷预测的精度。首先,对原始数据进行数据预处理,包括缺失值填充、相关性分析及数据归一化;其次,通过K-Means聚类将每个特征的数据转换成模糊规则引入模糊逻辑的处理,同时,模型结构方面采用双向长短期记忆网络(BiLSTM)和注意力机制(Attention);最后,对所提方法和传统的LSTM与BiLSTM-Attention模型的预测结果进行对比。结果表明,结合了模糊逻辑的模型精确度和鲁棒性都有了明显的提升,具有更好的预测性能。所提模型可以有效提高处理不确定性数据的能力,为负荷预测研究提供了参考。 展开更多
关键词 数据处理 模糊逻辑 负荷预测 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于VMD和辅助任务学习的短期负荷预测方法
15
作者 张恒 郑建勇 +1 位作者 梅飞 徐睿麟 《电力系统保护与控制》 北大核心 2025年第5期104-112,共9页
日高峰时段负荷的强波动性和随机性极大地影响了传统方法在进行负荷预测时的准确性,提出一种基于变分模态分解(variational mode decomposition,VMD)与辅助任务学习的短期负荷预测方法。首先,利用斯皮尔曼等级系数法确定与原始负荷具有... 日高峰时段负荷的强波动性和随机性极大地影响了传统方法在进行负荷预测时的准确性,提出一种基于变分模态分解(variational mode decomposition,VMD)与辅助任务学习的短期负荷预测方法。首先,利用斯皮尔曼等级系数法确定与原始负荷具有强相关性的气象特征。然后,采用变分模态分解算法逐次分离出原始负荷序列中的低频趋势和高频波动。接着,将其与相关气象结合作为辅助任务训练数据输入CNN-Bi GRU混合预测模型,并通过共享特征及跨任务注意力机制降低负荷强波动性对负荷预测的影响,实现对原始负荷的准确预测。最后,以我国南方某地区近3年内社会负荷数据为例进行仿真验证。结果表明,所提方法有效降低了日高峰时段负荷的强波动性和随机性对预测模型的影响,提升了负荷预测的准确度。 展开更多
关键词 短期负荷预测 变分模态分解 辅助任务学习 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于RIME-VMD-TCN-Attention的船舶电力负荷预测
16
作者 骆佳馨 高海波 +2 位作者 欧阳继能 李程 陈灿 《舰船科学技术》 北大核心 2025年第18期112-118,共7页
船舶电力负荷因具有噪声多、随机性和非线性强的特点,在短期电力负荷预测中存在噪声干扰、特征提取困难和模型拟合度差的问题。故本文提出一种结合霜冰优化算法(Rime Optimization Algorithm,RIME)的变分模态分解(Variational Mode Deco... 船舶电力负荷因具有噪声多、随机性和非线性强的特点,在短期电力负荷预测中存在噪声干扰、特征提取困难和模型拟合度差的问题。故本文提出一种结合霜冰优化算法(Rime Optimization Algorithm,RIME)的变分模态分解(Variational Mode Decomposition,VMD)、时序卷积网络(Temporal Convolutional Network,TCN)和注意力机制的组合预测模型。首先,通过RIME-VMD分解,将复杂的船舶电力负荷信号分解为多个仅包含简单负荷特征的单独模态,以减少噪声的影响同时提高分解效率;其次,通过TCN模型结合Attention机制对各模态分量进行预测并将结果组合,使模型自适应捕捉电力负荷中的非线性特征,提高时序预测能力;最后,实验分析表明,本文提出的RIME-VMD-TCN-Attention模型误差指标MAE、MAPE、RMSE和R2均优于传统LSTM模型、GRU模型、单一TCN模型和未经模态分解的混合模型,具有更高的预测精度。 展开更多
关键词 船舶短期电力负荷预测 霜冰优化算法 变分模态分解 时序卷积网络 注意力机制
在线阅读 下载PDF
考虑特征缺失的个性化居民短期负荷预测
17
作者 冯昌森 钱燚飞 +2 位作者 邵亮 文福拴 张有兵 《电力系统自动化》 北大核心 2025年第16期75-84,共10页
随着居民用电负荷在全社会总用电负荷中的占比逐渐提高,精准的居民负荷预测结果对提升电力系统运行的安全性和经济性,尤其是促进需求侧响应具有重要意义。然而,由于许多客观和人为因素,例如,量测配置不完整、量测设备故障和数据传输问题... 随着居民用电负荷在全社会总用电负荷中的占比逐渐提高,精准的居民负荷预测结果对提升电力系统运行的安全性和经济性,尤其是促进需求侧响应具有重要意义。然而,由于许多客观和人为因素,例如,量测配置不完整、量测设备故障和数据传输问题等,会导致负荷数据不全、丢失或畸变等问题。此外,居民负荷不确定性较大,要实现高精度负荷预测难度较大。在上述背景下,首先,提出一种个性化联邦学习框架,在不侵犯居民数据隐私的情况下,针对每个居民端定制高精度的个性化负荷预测模型。然后,采用图特征传播(GFP)方法重构缺失的负荷特征参数,可在相当程度上避免数据缺失引起的预测精度下降问题。最后,采用算例对所提方法进行测试。仿真结果表明,所提方法与现有代表性方法相比,其预测精度较高且处理数据缺失的性能也明显优于常用的插值方法。 展开更多
关键词 短期负荷预测 个性化联邦学习 图特征传播 特征缺失 特征重构
在线阅读 下载PDF
基于变分非线性调频模态分解及TCN-TPA-LSTM的短期电力负荷组合预测模型
18
作者 王博宇 文中 +3 位作者 周翔 赵迪 闫文文 覃治银 《现代电力》 北大核心 2025年第5期891-900,共10页
随着新型电力系统的发展,电力负荷“双高双峰”特性愈发明显,可靠准确的负荷预测对电力系统运行规划至关重要。为更精准地预测电力负荷,提出基于MICVNCMD-TCN-TPA-LSTM的短期电力负荷组合预测模型。采用最大信息系数(maximal informatio... 随着新型电力系统的发展,电力负荷“双高双峰”特性愈发明显,可靠准确的负荷预测对电力系统运行规划至关重要。为更精准地预测电力负荷,提出基于MICVNCMD-TCN-TPA-LSTM的短期电力负荷组合预测模型。采用最大信息系数(maximal information coefficient, MIC)理论对负荷与气象信息进行非线性耦合分析,选取关键信息。引入变分非线性调频模态分解(variational nonlinear chirp mode decomposition, VNCMD)处理非线性非平稳负荷数据,将其分解为相应分量。在此基础上,构建TCN-TPALSTM组合预测模型,根据各分量预测评价指标选取对应的预测模型,重组得到总体预测结果。基于某地实际电力负荷数据集的对比实验表明,所提预测方法相较于其他模型具有显著的性能优势,其预测精度和泛化能力均优于对比基准,充分验证了所提方法的有效性和技术优越性。 展开更多
关键词 短期电力负荷预测 最大信息系数 变分非线性调频模态分解 时间卷积网络 时序模式注意力机制 长短期记忆网络
在线阅读 下载PDF
基于变分模态分解和组合深度神经网络的综合能源系统多元负荷预测
19
作者 肖龙 张靖 +5 位作者 阚超 何宇 敖炫 李博文 古庭赟 刘影 《电网技术》 北大核心 2025年第10期4376-4385,共10页
负荷预测是综合能源系统经济运行和优化调度的前提。然而,随着荷侧用能需求的多元化和各类负荷之间的耦合性逐渐增强,使得综合能源系统的负荷特性日益复杂。为此,该文提出一种基于变分模态分解(variational modal decomposition,VMD)和... 负荷预测是综合能源系统经济运行和优化调度的前提。然而,随着荷侧用能需求的多元化和各类负荷之间的耦合性逐渐增强,使得综合能源系统的负荷特性日益复杂。为此,该文提出一种基于变分模态分解(variational modal decomposition,VMD)和组合深度神经网络的综合能源系统多元负荷预测方法。首先,利用VMD对多元负荷进行分解,以降低原始负荷数据的非平稳性;其次,将经过VMD分解后得到的多元负荷分量与外界影响因素作为输入,通过时间卷积网络(temporal convolutional network,TCN)提取多元数据时序特征,并利用图卷积网络(graph convolutional network,GCN)挖掘多元数据之间的耦合特征;然后,利用长短期记忆网络(long short-term memory,LSTM)捕捉多元数据的长期依赖关系。最后,以美国亚利桑那州立大学坦佩校区综合能源系统进行案例分析,验证该文所提方法的有效性与合理性。 展开更多
关键词 综合能源系统 多元负荷预测 变分模态分解 卷积网络 长短期记忆网络
在线阅读 下载PDF
基于自适应辛几何模态分解−多元线性回归−卷积长短时记忆的台区电力负荷预测
20
作者 方磊 楚成博 +4 位作者 何映虹 冯隆基 刘福政 王宁 张法业 《现代电力》 北大核心 2025年第4期840-846,共7页
准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,AS... 准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。 展开更多
关键词 电力负荷预测 自适应辛几何模态分解 多元线性回归 卷积长短时记忆网络
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部