Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding s...Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding spherical shell(MSSS)with minimal apertures,tailored to meet these requirements.By employing a combination of analytical solutions and finite element analysis(FEA),we achieved superior magnetic shielding while maintaining a compact form factor.The analytical solution for the shielding factor indicated that a four-layer permalloy sphere shell with optimized air gaps was necessary.A numerical analysis model of the MSSS was developed and validated using COMSOL software,confirming the suitability of the air gaps.The size,shape,and orientation of the openings in the perforated sphere shell were meticulously designed and optimized to minimize residual magnetism.The optimal structure was fabricated,resulting in triaxial shielding factors of 47619,52631,and 21739,meeting the anticipated requirements.A comparison of simulation results with experimental tests demonstrated the efficacy of the design methodology.This study has significant implications for ultrasensitive magnetic field detection devices requiring weak magnetic field environments,such as atomic gyroscopes,magnetometers,atomic interferometers,and atomic clocks.展开更多
The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face...The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized.展开更多
This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated gla...This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated glass composition follows the formula[(TeO_(2))_(75)(B_(2)O_(3))_(25)]_(98-x)(Bi_(2)O_(3))_x[Tm_(2)O_(3)]_(2),where x=0 mol%,5 mol%,10 mol%,15 mol%,20 mol%,25 mol%,and 30 mol%.All glass samples remain transparent,with an optical bandgap(E_(opt))exceeding 3.1 e V,ensuring visible light transmission.Radiation shielding data from Phy-X and XCom reveal interactions of the photoelectric effect,Compton scattering,and pair production,with minimal relative difference in mass attenuation coefficient(MAC)which is between0.05 and 0.56.At 0.662 Me V photon energy,the 20 mol%and 25 mol%Bi_(2)O_(3)glasses exhibit significantly higher Phy-X MAC values than other samples,except RS 520 glass,which contains 71%Pb O.Despite incorporating only up to 25 mol%Bi_(2)O_(3),these glasses outperform others in density,half-value layer(HVL),and mean free path(MFP).Correlating E_(opt)and MAC,the 20 mol%Bi_(2)O_(3)glass is the best candidate for transparent radiation shielding glass due to its wide optical bandgap which prevents ionization of trapped holes.Significantly,the linkage between MFP and molar refraction was also discovered based on the particle size influence on both parameters.展开更多
This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled a...This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.展开更多
Whipple shields as sacrificial bumpers,safeguard the satellites against extremely fast,different-sized projectiles traveling through space in the low earth orbit.Typical Whipple shields comprise a front and rear plate...Whipple shields as sacrificial bumpers,safeguard the satellites against extremely fast,different-sized projectiles traveling through space in the low earth orbit.Typical Whipple shields comprise a front and rear plate,separated by a gap or space.Recent advancements have explored the use of foam,cellular cores,and alternative materials such as ceramics instead of aluminium for the plates.In the current work,the effect of including fluid cores(air/water)sandwiched between the front and rear plates,on the response to hypervelocity impact was explored through a numerical approach.The numerical simulation consisted of hypervelocity impact by a 2 mm diameter,stainless steel projectile,launched at speeds of 3 e9 km/s with a normal impact trajectory towards the Whipple shield.The front and rear bumpers,made of AA6061-T6,were each 1 mm thick.A space of 10 mm was taken between the plates(occupied by fluid).The key metrics analyzed were the perforation characteristics,stages of the debris cloud generation and propagation,energy variations(internal,kinetic and plastic work),temperature variations,and the fragmentation summary.From the computational analysis,employing water-core in Whipple shields could prevent the rear bumper perforation till 6 km/s,lower the peak temperatures at the front bumper perforation zones and debris tip,and generate fewer,larger fragments.展开更多
It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comp...It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comprehensive overview of advances in the development of bumper materials for spacecraft shield applications.In particular,the protective mechanism and process of the bumper using different materials against hypervelocity impact are reviewed and discussed.The advantages and disadvantages of each material used in shield were discussed,and the performance under hypervelocity impact was given according to the specific configuration.This review provides the useful reference and basis for researchers and engineers to create bumper materials for spacecraft shield applications,and the contemporary challenges and future directions for bumper materials for spacecraft shield were presented.展开更多
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh...A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements.展开更多
During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilitie...During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.展开更多
Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were p...Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were prepared by a two-step reduction of graphene oxide(GO),in which the two steps were chemical reduction by HI and the solid phase microwave irradiation.A significant increase of the film thickness from around 20 to 200μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation.The total shielding effectiveness(SET)and the reflective SE(SE_(R))of the SiC@RGO porous thin films depended on the GO/SiC mass ratio.The highest SET achieved was 35.6 dB while the SE_(R) was only 2.8 dB,when the GO/SiC mass ratio was 4∶1.The addition of SiC whiskers was critical for the multi-reflection,interfacial po-larization and dielectric attenuation of EM waves.A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers.The highest SET of the multilayer films reached 75.1 dB with a SE_(R) of 2.7 dB for a film thickness of about 1.5 mm.These porous SiC@RGO thin films should find use in multilayer or sand-wich structures for EMI absorption in packaging or lining.展开更多
The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through a...The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through absorption.Six fiber-reinforced epoxy composite panels,each with a different fabric material and stacking sequence,have been fabricated using a hand-layup vacuum bagging process.Two panels made of Kevlar and glass fibers,referred to as(K-NIJ)and(G-NIJ),have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA(9 mm×19 mm FMJ 124 g)test.Three panels,namely,a hybrid of Kevlar and glass(H-S),glass with ceramic particles(C-S),and glass with recycled rubber(R-S)have been impacted by the bullet at the center,while the fourth panel made of glass fiber(G-S)has been impacted at the side.EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method.Results indicate that four panels(K-NIJ,G-NIJ,H-S,and G-S)are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity.However,under such conditions,these panels may experience localized delamination with variable severity.The EMI measurements reveal that the highest absorptivity observed is 88% for the KNIJ panel at 10.8 GHz,while all panels maintain an average absorptivity above 65%.All panels act as a lossy medium with a peak absorptivity at different frequencies,with K-NIJ and H-S panels demonstrating the highest absorptivity.In summary,the study results in the development of a novel,costeffective,multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties.The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency;no bullet penetration or back face signature is observed,and it also demonstrates high EMI shielding absorption.Overall,the materials developed show great promise for various applications,including the military and defense.展开更多
In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure tha...In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dyna...Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.展开更多
A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an ou...A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an outer diameter of 12.2 m.The existing subway was excavated by shallow tunnelling method.The project layout,geological conditions,reinforcement measures,operational parameters of shield machine and monitoring results of the project are introduced.During the Qinghuayuan tunnel excavation below the existing subway,total thrust,shield driving speed,cutterhead rotation speed and torque were manually controlled below the average values obtained from the previous monitoring of this project,which could effectively reduce the disturbance of the surrounding soil induced by shield excavation.The Gaussian fitting function can appropriately fit both the ground and the existing subway settlements.The trough width is influenced not only by the excavation overburden depth,but also by the forepoling reinforcement and tail void grouting measures.展开更多
It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(E...It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(EGM)and the rolling sphere method were developed base on the breakdowncharacteristics of negative long spark discharges,which have been widely used to design the lightning shielding system of transmission lines and structures.In recent years,the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.The impact of upward connecting leader launched from those large-scale facilities on the lightning shielding performance cannot be neglected;otherwise,the validity of the EGM in the lightning shielding design of EHV and UHV transmission lines will be challenged.The research evolutions on the lightning striking distance,the lightning simulation experiments and the positive upward connecting leader process by using laboratory long sparks are reviewed and discussed in this paper.展开更多
Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield co...Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quan...Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0300500 and 2021ZD0300503).
文摘Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding spherical shell(MSSS)with minimal apertures,tailored to meet these requirements.By employing a combination of analytical solutions and finite element analysis(FEA),we achieved superior magnetic shielding while maintaining a compact form factor.The analytical solution for the shielding factor indicated that a four-layer permalloy sphere shell with optimized air gaps was necessary.A numerical analysis model of the MSSS was developed and validated using COMSOL software,confirming the suitability of the air gaps.The size,shape,and orientation of the openings in the perforated sphere shell were meticulously designed and optimized to minimize residual magnetism.The optimal structure was fabricated,resulting in triaxial shielding factors of 47619,52631,and 21739,meeting the anticipated requirements.A comparison of simulation results with experimental tests demonstrated the efficacy of the design methodology.This study has significant implications for ultrasensitive magnetic field detection devices requiring weak magnetic field environments,such as atomic gyroscopes,magnetometers,atomic interferometers,and atomic clocks.
基金Anusandhan National Research Foundation (ANRF), Department of Science & Technology (DST), New Delhi, India under Ramanujan award (SB/S2/RJN-159/2017)。
文摘The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized.
基金funded by the National Defence University of Malaysia(Grant No.UPNM/2022/GPJP/SG/3)My Brain Sc Scholarship 2023。
文摘This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated glass composition follows the formula[(TeO_(2))_(75)(B_(2)O_(3))_(25)]_(98-x)(Bi_(2)O_(3))_x[Tm_(2)O_(3)]_(2),where x=0 mol%,5 mol%,10 mol%,15 mol%,20 mol%,25 mol%,and 30 mol%.All glass samples remain transparent,with an optical bandgap(E_(opt))exceeding 3.1 e V,ensuring visible light transmission.Radiation shielding data from Phy-X and XCom reveal interactions of the photoelectric effect,Compton scattering,and pair production,with minimal relative difference in mass attenuation coefficient(MAC)which is between0.05 and 0.56.At 0.662 Me V photon energy,the 20 mol%and 25 mol%Bi_(2)O_(3)glasses exhibit significantly higher Phy-X MAC values than other samples,except RS 520 glass,which contains 71%Pb O.Despite incorporating only up to 25 mol%Bi_(2)O_(3),these glasses outperform others in density,half-value layer(HVL),and mean free path(MFP).Correlating E_(opt)and MAC,the 20 mol%Bi_(2)O_(3)glass is the best candidate for transparent radiation shielding glass due to its wide optical bandgap which prevents ionization of trapped holes.Significantly,the linkage between MFP and molar refraction was also discovered based on the particle size influence on both parameters.
基金Project(52178402) supported by the National Natural Science Foundation of China。
文摘This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.
文摘Whipple shields as sacrificial bumpers,safeguard the satellites against extremely fast,different-sized projectiles traveling through space in the low earth orbit.Typical Whipple shields comprise a front and rear plate,separated by a gap or space.Recent advancements have explored the use of foam,cellular cores,and alternative materials such as ceramics instead of aluminium for the plates.In the current work,the effect of including fluid cores(air/water)sandwiched between the front and rear plates,on the response to hypervelocity impact was explored through a numerical approach.The numerical simulation consisted of hypervelocity impact by a 2 mm diameter,stainless steel projectile,launched at speeds of 3 e9 km/s with a normal impact trajectory towards the Whipple shield.The front and rear bumpers,made of AA6061-T6,were each 1 mm thick.A space of 10 mm was taken between the plates(occupied by fluid).The key metrics analyzed were the perforation characteristics,stages of the debris cloud generation and propagation,energy variations(internal,kinetic and plastic work),temperature variations,and the fragmentation summary.From the computational analysis,employing water-core in Whipple shields could prevent the rear bumper perforation till 6 km/s,lower the peak temperatures at the front bumper perforation zones and debris tip,and generate fewer,larger fragments.
基金supported by National Natural Science Foundation of China(Grant Nos.12202068,12202087)China National Space Administration Preliminary Research Project(Grant Nos.KJSP2023020201,KJSP2020010402).
文摘It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comprehensive overview of advances in the development of bumper materials for spacecraft shield applications.In particular,the protective mechanism and process of the bumper using different materials against hypervelocity impact are reviewed and discussed.The advantages and disadvantages of each material used in shield were discussed,and the performance under hypervelocity impact was given according to the specific configuration.This review provides the useful reference and basis for researchers and engineers to create bumper materials for spacecraft shield applications,and the contemporary challenges and future directions for bumper materials for spacecraft shield were presented.
基金supported by National Natural Science Foundation of China(Grant No.12432018,12372346)the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002).
文摘A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements.
文摘During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.
文摘Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were prepared by a two-step reduction of graphene oxide(GO),in which the two steps were chemical reduction by HI and the solid phase microwave irradiation.A significant increase of the film thickness from around 20 to 200μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation.The total shielding effectiveness(SET)and the reflective SE(SE_(R))of the SiC@RGO porous thin films depended on the GO/SiC mass ratio.The highest SET achieved was 35.6 dB while the SE_(R) was only 2.8 dB,when the GO/SiC mass ratio was 4∶1.The addition of SiC whiskers was critical for the multi-reflection,interfacial po-larization and dielectric attenuation of EM waves.A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers.The highest SET of the multilayer films reached 75.1 dB with a SE_(R) of 2.7 dB for a film thickness of about 1.5 mm.These porous SiC@RGO thin films should find use in multilayer or sand-wich structures for EMI absorption in packaging or lining.
基金the generous support from the Deanship of Research-Jordan University of Science and Technology,IrbidJordan(Grant number 318/2021)。
文摘The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through absorption.Six fiber-reinforced epoxy composite panels,each with a different fabric material and stacking sequence,have been fabricated using a hand-layup vacuum bagging process.Two panels made of Kevlar and glass fibers,referred to as(K-NIJ)and(G-NIJ),have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA(9 mm×19 mm FMJ 124 g)test.Three panels,namely,a hybrid of Kevlar and glass(H-S),glass with ceramic particles(C-S),and glass with recycled rubber(R-S)have been impacted by the bullet at the center,while the fourth panel made of glass fiber(G-S)has been impacted at the side.EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method.Results indicate that four panels(K-NIJ,G-NIJ,H-S,and G-S)are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity.However,under such conditions,these panels may experience localized delamination with variable severity.The EMI measurements reveal that the highest absorptivity observed is 88% for the KNIJ panel at 10.8 GHz,while all panels maintain an average absorptivity above 65%.All panels act as a lossy medium with a peak absorptivity at different frequencies,with K-NIJ and H-S panels demonstrating the highest absorptivity.In summary,the study results in the development of a novel,costeffective,multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties.The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency;no bullet penetration or back face signature is observed,and it also demonstrates high EMI shielding absorption.Overall,the materials developed show great promise for various applications,including the military and defense.
基金supported by the Chinese Studentship Council(Grant No.201908060224)the National Natural Science Foundation of China (Grant Nos.11872310,11972308)。
文摘In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金Project(2023JBZY030)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1834208)supported by the National Natural Science Foundation of China。
文摘Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.
基金Project(U1934210)supported by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of ChinaProject(8202037)supported by the Natural Science Foundation of Beijing,China。
文摘A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an outer diameter of 12.2 m.The existing subway was excavated by shallow tunnelling method.The project layout,geological conditions,reinforcement measures,operational parameters of shield machine and monitoring results of the project are introduced.During the Qinghuayuan tunnel excavation below the existing subway,total thrust,shield driving speed,cutterhead rotation speed and torque were manually controlled below the average values obtained from the previous monitoring of this project,which could effectively reduce the disturbance of the surrounding soil induced by shield excavation.The Gaussian fitting function can appropriately fit both the ground and the existing subway settlements.The trough width is influenced not only by the excavation overburden depth,but also by the forepoling reinforcement and tail void grouting measures.
文摘It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(EGM)and the rolling sphere method were developed base on the breakdowncharacteristics of negative long spark discharges,which have been widely used to design the lightning shielding system of transmission lines and structures.In recent years,the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.The impact of upward connecting leader launched from those large-scale facilities on the lightning shielding performance cannot be neglected;otherwise,the validity of the EGM in the lightning shielding design of EHV and UHV transmission lines will be challenged.The research evolutions on the lightning striking distance,the lightning simulation experiments and the positive upward connecting leader process by using laboratory long sparks are reviewed and discussed in this paper.
基金Project(52078060) supported by the National Natural Science Foundation of ChinaProject(2020JJ4606)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2018IC19) supported by the International Cooperation and Development Project of Double-First-Class Scientific Research in Changsha University of Science&Technology,ChinaProject(18ZDXK05) supported by Innovative Program of Key Disciplines with Advantages and Characteristics of Civil Engineering of Changsha University of Science&Technology,China。
文摘Shield tunneling inevitably passes through a large number of pile foundations in urban areas.Thus,an accurate assessment of tunneling-induced pile displacement and potential damage becomes a critical part of shield construction.This study presents a mechanism research of pile-soil-tunnel interaction through Pasternak-based two-stage analysis method.In the first stage,based on Mindlin’s solution,the soil displacement fields induced by shield thrust force,cutterhead frictions,shield shell frictions and grouting pressure are derived.The analytical solution of threedimensional soil displacement field is established by introducing Pinto’s three-dimensional volume loss formula,which solves the problems that shield construction factors are not taken into account in Loganathan’s formula and only twodimensional soil displacement field can be obtained.In the second stage,based on Pasternak’s two-parameter foundation model,the analytical solution of pile displacement induced by shield tunneling in layered soil is derived.A case was found in the project of interval tunnels from Wanjiali Square to Furong District Government of Changsha Metro Line 5,where the shield tunnels were constructed near viaduct piles.The reliability of the analytical solution proposed in this study is verified by comparing with the field measured data and the results of finite element method(FEM).In addition,the comparisons of longitudinal,horizontal and vertical displacements of soil and pile foundation analyzed by the analytical solution and FEM provide corresponding theoretical basis,which has significant engineering guidance for similar projects.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
基金Projects(BK20150337,BK20140845,BK20140844)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015Y04)supported by the Transportation Science and Technology Project of Jiangsu Province,China+1 种基金Project(41504081)supported by the National Natural Science Foundation of ChinaProjects(2014M561567,2016T90416)supported by the China Postdoctoral Science Foundation
文摘Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.