期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
1
作者 H.Sanuki K.Itoh +1 位作者 A.Fujisawa J.Q.Dong 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2610-2614,共5页
Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various micr... Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices. 展开更多
关键词 sheared flow microinstabilities transport bumpy tori HELIOTRON
在线阅读 下载PDF
Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
2
作者 Shaukat Ali Shan Qamar-ul-Haque 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期428-434,共7页
An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextens... An investigation is carried out for understanding the properties of ion–acoustic(IA) solitary waves in an inhomogeneous magnetized electron-ion plasma with field-aligned sheared flow under the impact of q-nonextensive trapped electrons. The Schamel equation and its stationary solution in the form of solitary waves are obtained for this inhomogeneous plasma. It is shown that the amplitude of IA solitary waves increases with higher trapping efficiency(β), while the width remains almost the same. Further, it is found that the amplitude of the solitary waves decreases with enhanced normalized drift speed, shear flow parameter and the population of the energetic particles. The size of the nonlinear solitary structures is calculated to be a few hundred meters and it is pointed out that the present results are useful to understand the solar wind plasma. 展开更多
关键词 sheared flow plasma density inhomogeniety electron trapping
在线阅读 下载PDF
Numerical Simulation of Tripolar Vortex in Dusty Plasma with Sheared Flow and Sheared Magnetic Field
3
作者 王舸 陈银华 谭立伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2936-2938,共3页
This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space pla... This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex. 展开更多
关键词 dusty plasmas tripolar vortices numerical simulation shear flow shear magnetic field
在线阅读 下载PDF
Stability analysis of viscous Z-pinch plasma with a sheared axial flow 被引量:1
4
作者 张扬 丁宁 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2994-3002,共9页
Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately... Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately. It is demonstrated that the plasma viscosity indeed has a stabilization effect on the MRT mode in the whole wavenumber region, and its influence increases with the perturbation wavenumber increasing. After the characteristics and feasibility of the approximate method have been investigated, we apply it to the stability analysis of viscous plasma where a sheared axial flow (SAF) is involved, and we attain an analytical dispersion relation. It is suggested that the viscosity and the SAF are complemental with each other, and a wide wavenumber range of perturbation is possible to be restrained if the SAF and the viscosity are large enough. Finally, we calculate the possible value of viscosity parameter according to the current experimental conditions, and the results show that since the value of viscosity is much less than the threshold value, its mitigation effect is small enough to be neglected. The role of the viscosity in the stabilization becomes considerable only if special techniques are so developed that the Z-pinch plasma viscosity can be increased greatly. 展开更多
关键词 Z-PINCH magneto-Rayleigh-Taylor (MRT) instability VISCOSITY sheared axial flow
在线阅读 下载PDF
ACOUSTIC PROPAGATION IN SHEARED MEAN FLOW USING COMPUTATIONAL AEROACOUSTICS 被引量:1
5
作者 司海青 王兵 吴晓军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第1期33-38,共6页
Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( A... Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease. 展开更多
关键词 computational aeroacoustics acoustic propagation problems sheared mean flow acoustic propagation equations
在线阅读 下载PDF
Comparison Between Mitigation Effects of the Finite Larmor Radius and Sheared Axial Flow on Rayleigh-Taylor Instability in Z-Pinch Implosions 被引量:1
6
作者 邱孝明 黄林 简广德 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第5期1429-1434,共6页
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp... A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region. 展开更多
关键词 Z-pinch implosions rayleigh-taylor instability finite larmor radius sheared axial flow. MHD formulation
在线阅读 下载PDF
Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows
7
作者 石秉仁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第2期1177-1182,共6页
Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and ... Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and non-circular cross-section. Equilibrium properties includingthe fiow-induced density asymmetry are analyzed. 展开更多
关键词 Axisymmetric Toroidal Equilibrium with sheared Toroidal flows exp
在线阅读 下载PDF
THE NONLINEAR STABILITY OF PLANE PARALLEL SHEAR FLOWS WITH RESPECT TO TILTED PERTURBATIONS
8
作者 许兰喜 关芳芳 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1036-1045,共10页
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc... The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise. 展开更多
关键词 plane parallel shear flows energy method energy functional nonlinear stability Reynolds number
在线阅读 下载PDF
Investigation of high rate mechanical flow followed by ignition for high-energy propellant under dynamic extrusion loading
9
作者 Liying Dong Yanqing Wu +1 位作者 Kun Yang Xiao Hou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期336-347,共12页
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism... Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction. 展开更多
关键词 NEPE propellant Crevice extrusion Shear flow Sample thickness Ignition reaction
在线阅读 下载PDF
Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media 被引量:3
10
作者 蔡庆东 陈十一 盛晓伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期326-331,共6页
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution fu... This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone.. In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent fl'iction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough. 展开更多
关键词 granular shearing flow FRICTION molecular dynamics modeling
在线阅读 下载PDF
Experimental Study on Transitional Flow in a Circular Microtube 被引量:1
11
作者 郝鹏飞 姚朝晖 +1 位作者 何枫 朱克勤 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第10期2815-2818,共4页
We investigate the characteristics of the transition from laminar to turbulent flow in the microtube with a diameter of 310μm. The microscopic particle image velocimetry is used to measure the water flow at Re =1600-... We investigate the characteristics of the transition from laminar to turbulent flow in the microtube with a diameter of 310μm. The microscopic particle image velocimetry is used to measure the water flow at Re =1600-2500 in the microtube. It is found that the flow transition occurs at Re=1600-1900, and the streamwise streaks and vortices appear in the transitional flow fields. These experimental observations provide a validation for the theoretical prediction of unstable travelling waves in pipe flow. 展开更多
关键词 EXACT COHERENT STRUCTURES PIPE-flow CHANNEL flow SHEAR flowS TURBULENCE MICROCHANNELS WATER
在线阅读 下载PDF
Gravity-capillary waves modulated by linear shear flow in arbitrary water depth 被引量:1
12
作者 Shaofeng Li Jinbao Song Anzhou Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期346-355,共10页
Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) descr... Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves(GCWs) are influenced by a linear shear flow(LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability(MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth,surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity. 展开更多
关键词 gravity-capillary waves nonlinear Schrodinger equation linear shear flow modulational instability
在线阅读 下载PDF
Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force 被引量:1
13
作者 张辉 范宝春 李鸿志 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期139-145,共7页
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc... The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift. 展开更多
关键词 hydromechanics vortex-induced vibration shear flow flow control electro-magnetic control
在线阅读 下载PDF
Gao's interacting shear flows( ISF) theory and its inferences and their applications 被引量:1
14
作者 于勇 张海荣 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期291-300,共10页
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna... Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized. 展开更多
关键词 viscous/in-viscid interaction shear flow (ISF) theory shock wave-boundary layer inter-action hypersonic flow computational fluid dynamics (CFD)
在线阅读 下载PDF
Hydrodynamics of passing-over motion during binary droplet collision in shear flow
15
作者 王程遥 张程宾 +2 位作者 黄庠永 刘向东 陈永平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期491-500,共10页
A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, ... A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information(e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation ?;/R;exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one. 展开更多
关键词 droplet collision passing-over motion HYDRODYNAMICS shear flow
在线阅读 下载PDF
The effect of two-dimensional shear flow on the stability of a crystal interface in a supercooled melt
16
作者 曹斌 林鑫 +1 位作者 王猛 黄卫东 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期374-381,共8页
A model is developed based on the time-related thermal diffusion equations to investigate the effects of twodimensional shear flow on the stability of a crystal interface in the supercooled melt of a pure substance. S... A model is developed based on the time-related thermal diffusion equations to investigate the effects of twodimensional shear flow on the stability of a crystal interface in the supercooled melt of a pure substance. Similar to the three-dimensional shear flow as described in our previous paper, the two-dimensional shear flow can also be found to reduce the growth rate of perturbation amplitude. However, compared with the case of the Laplace equation for a steady-state thermal diffusion field, due to the existence of time partial derivatives of the temperature fields in the diffusion equation the absolute value of the gradients of the temperature fields increases, therefore destabilizing the interface. The circular interface is more unstable than in the case of Laplace equation without time partial derivatives. The critical stability radius of the crystal interface increases with shearing rate increasing. The stability effect of shear flow decreases remarkably with the increase of melt undercooling. 展开更多
关键词 spherical crystal shear flow interface stability Trivedi criterion
在线阅读 下载PDF
The interaction between zonal flow and Rossby waves with scalar nonlinearity
17
作者 张喜平 赵强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期357-360,共4页
The nonlinear interactions between zonal flow and Rossby waves are studied by numerical simulations with focus on the effects of scalar nonlinearity. The numerical results show that the scalar nonlinearity has an appr... The nonlinear interactions between zonal flow and Rossby waves are studied by numerical simulations with focus on the effects of scalar nonlinearity. The numerical results show that the scalar nonlinearity has an appreciable influence on the Rossby dipole evolution and can reduce the threshold of the disturbance energy increase. 展开更多
关键词 Rossby wave sheared zonal flow DIPOLE scalar nonlinearity
在线阅读 下载PDF
Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
18
作者 陈勇 黄奕勇 +2 位作者 陈小前 白玉铸 谭晓栋 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期246-256,共11页
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions a... The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier-Bessel theory is proposed to semi-anaiyticaily solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are anaiyzed 展开更多
关键词 wave propagation shear flow thermoviscous gas Fourier-Bessel theory
在线阅读 下载PDF
Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
19
作者 王琳 王先驱 +1 位作者 王晓钢 刘悦 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期345-352,共8页
The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and drive... The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point. 展开更多
关键词 out-of-plane magnetic field shear flow magnetic reconnection Hall effects
在线阅读 下载PDF
Electro–magnetic control of shear flow over a cylinder for drag reduction and lift enhancement
20
作者 张辉 范宝春 +2 位作者 陈志华 陈帅 李鸿志 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期362-369,共8页
In this paper, the electro-magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, a... In this paper, the electro-magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of "8" consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K 〉 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. 展开更多
关键词 cylinder wake control Lorentz force shear flow hydrodynamic force
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部