Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F...A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.展开更多
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis...Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is propose...The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is proposed, which consists of the following two aspects. One is to estimate transformation parameters between two images from the distributions of geometric property differences instead of establishing explicit feature correspondences. This procedure is treated as the pre-registration. The other aspect is that mean Hausdorff distance computation is replaced with the analysis of the second difference of generalized Hausdorff distance so as to eliminate the redundant points. Experimental results show that our registration method outperforms the method based on mean Hausdorff distance. The registration errors are noticeably reduced in the partial matching images.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability...To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.展开更多
The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented...The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
This paper presents a modified multi-resolution telescopic search algorithm (MRTlcSA) for the block-matching motion estimation. A novel inverse telescopic search is substituted for the conventional telescopic search, ...This paper presents a modified multi-resolution telescopic search algorithm (MRTlcSA) for the block-matching motion estimation. A novel inverse telescopic search is substituted for the conventional telescopic search, that reduces the on-chip memory size and memory bandwidth for VLSI implementation. In addition, strategies of motion track and adaptive search window are applied to reduce the computational complexity of motion estimation. Simulation results show that, compared with the MRTleSA, the proposed algorithm reduces the computational load to only 30% while preserving almost the same image quality. Comparisons on hardware cost and power consumption of the VLSI implementations using the two algorithms are also presented in the paper.展开更多
For the pre-acquired serial images from camera lengthways motion, a view synthesis algorithm based on epipolar geometry constraint is proposed in this paper. It uses the whole matching and maintaining order characters...For the pre-acquired serial images from camera lengthways motion, a view synthesis algorithm based on epipolar geometry constraint is proposed in this paper. It uses the whole matching and maintaining order characters of the epipolar line, Fourier transform and dynamic programming matching theories, thus truly synthesizing the destination image of current viewpoint. Through the combination of Fourier transform, epipolar geometry constraint and dynamic programming matching, the circumference distortion problem resulting from conventional view synthesis approaches is effectively avoided. The detailed implementation steps of this algorithm are given, and some running instances are presented to illustrate the results.展开更多
Integral Imaging(II)是一种能够记录和显示全真三维场景的图像技术.该技术采用微透镜阵列记录空间场景,空间任意一点的深度信息只需通过一次成像即可直接获得.本文研究结合多基线立体匹配算法采用II直接获取物体空间信息的方法.其结果...Integral Imaging(II)是一种能够记录和显示全真三维场景的图像技术.该技术采用微透镜阵列记录空间场景,空间任意一点的深度信息只需通过一次成像即可直接获得.本文研究结合多基线立体匹配算法采用II直接获取物体空间信息的方法.其结果既可为下一代基于II的三维电视图像的数据处理提供应用基础,同时也可望应用于开发新型的深度测量工具.展开更多
红外技术能有效地检测电力设备过热缺陷,具有远距离、不接触、不取样、准确、快速、直观等特点。传统的电力设备故障红外人工诊断耗时、耗力,而针对人工诊断不足提出的智能诊断其难点之一在于能否较好的获得感兴趣区域(ROI,Region of in...红外技术能有效地检测电力设备过热缺陷,具有远距离、不接触、不取样、准确、快速、直观等特点。传统的电力设备故障红外人工诊断耗时、耗力,而针对人工诊断不足提出的智能诊断其难点之一在于能否较好的获得感兴趣区域(ROI,Region of interest)。红外图像具有强度集中、对比度低等性质,常用的分割算法用于电力设备红外图像ROI获取,其结果往往是过分割。针对过分割难点,本文提出一种基于FAs T-Match算法的电力设备红外图像分割方法。首先,运用FAs T-Match算法在可见光图像中近似模板匹配,然后在红外与可见光图像之间通过近似仿射变换找到目标在红外图像中的近似区域,最后用分割算法对近似区域分割。实验结果表明,提出的方法能够较好地解决电力设备红外图像过分割问题。展开更多
A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t...A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
文摘A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.
基金This work was supported by the Equipment Pre-Research Foundation of China(6140001020310).
文摘Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金Project(61070090)supported by the National Natural Science Foundation of ChinaProject(2012J4300030)supported by the GuangzhouScience and Technology Support Key Projects,China
文摘The mean Hausdorff distance, though highly applicable in image registration, does not work well on partial matching images. An improvement upon traditional Hausdorff-distance-based image registration method is proposed, which consists of the following two aspects. One is to estimate transformation parameters between two images from the distributions of geometric property differences instead of establishing explicit feature correspondences. This procedure is treated as the pre-registration. The other aspect is that mean Hausdorff distance computation is replaced with the analysis of the second difference of generalized Hausdorff distance so as to eliminate the redundant points. Experimental results show that our registration method outperforms the method based on mean Hausdorff distance. The registration errors are noticeably reduced in the partial matching images.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
文摘To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.
文摘The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.
文摘This paper presents a modified multi-resolution telescopic search algorithm (MRTlcSA) for the block-matching motion estimation. A novel inverse telescopic search is substituted for the conventional telescopic search, that reduces the on-chip memory size and memory bandwidth for VLSI implementation. In addition, strategies of motion track and adaptive search window are applied to reduce the computational complexity of motion estimation. Simulation results show that, compared with the MRTleSA, the proposed algorithm reduces the computational load to only 30% while preserving almost the same image quality. Comparisons on hardware cost and power consumption of the VLSI implementations using the two algorithms are also presented in the paper.
文摘For the pre-acquired serial images from camera lengthways motion, a view synthesis algorithm based on epipolar geometry constraint is proposed in this paper. It uses the whole matching and maintaining order characters of the epipolar line, Fourier transform and dynamic programming matching theories, thus truly synthesizing the destination image of current viewpoint. Through the combination of Fourier transform, epipolar geometry constraint and dynamic programming matching, the circumference distortion problem resulting from conventional view synthesis approaches is effectively avoided. The detailed implementation steps of this algorithm are given, and some running instances are presented to illustrate the results.
文摘红外技术能有效地检测电力设备过热缺陷,具有远距离、不接触、不取样、准确、快速、直观等特点。传统的电力设备故障红外人工诊断耗时、耗力,而针对人工诊断不足提出的智能诊断其难点之一在于能否较好的获得感兴趣区域(ROI,Region of interest)。红外图像具有强度集中、对比度低等性质,常用的分割算法用于电力设备红外图像ROI获取,其结果往往是过分割。针对过分割难点,本文提出一种基于FAs T-Match算法的电力设备红外图像分割方法。首先,运用FAs T-Match算法在可见光图像中近似模板匹配,然后在红外与可见光图像之间通过近似仿射变换找到目标在红外图像中的近似区域,最后用分割算法对近似区域分割。实验结果表明,提出的方法能够较好地解决电力设备红外图像过分割问题。
基金supported by the National Natural Science Foundation of China(61771369 61775219+5 种基金 61640422)the Fundamental Research Funds for the Central Universities(JB180310)the Equipment Research Program of the Chinese Academy of Sciences(YJKYYQ20180039)the Shaanxi Provincial Key R&D Program(2018SF-409 2018ZDXM-SF-027)the Natural Science Basic Research Plan
文摘A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.