Considering the influence of reagent adjustment in different flotation bank on the final production index and the difficulty of establishing an effective mathematical model,a coordinated optimization method for dosage...Considering the influence of reagent adjustment in different flotation bank on the final production index and the difficulty of establishing an effective mathematical model,a coordinated optimization method for dosage reagent based on key characteristics variation tendency and case-based reasoning is proposed.On the basis of the expert reagent regulation method in antimony flotation process,the reagent dosage pre-setting model of the roughing–scavenging bank is constructed based on case-based reasoning.Then,the sensitivity index is used to calculate the key features of reagent dosage.The reagent dosage compensation model is constructed based on the variation tendency of the key features in the roughing and scavenging process.At last,the prediction model is used to finish the classification and discriminant analysis.The simulation results and industrial experiment in antimony flotation process show that the proposed method reduces fluctuation of the tailings indicators and the cost of reagent dosage.It can lay a foundation for optimizing the whole process of flotation.展开更多
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ...The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.展开更多
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic...Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.展开更多
基金Project(61725306)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61473318,61403136,61703157,61751312)supported by the National Natural Science Foundation of ChinaProject(16C0940)supported by Foundation of Hunan Educational Committee,China
文摘Considering the influence of reagent adjustment in different flotation bank on the final production index and the difficulty of establishing an effective mathematical model,a coordinated optimization method for dosage reagent based on key characteristics variation tendency and case-based reasoning is proposed.On the basis of the expert reagent regulation method in antimony flotation process,the reagent dosage pre-setting model of the roughing–scavenging bank is constructed based on case-based reasoning.Then,the sensitivity index is used to calculate the key features of reagent dosage.The reagent dosage compensation model is constructed based on the variation tendency of the key features in the roughing and scavenging process.At last,the prediction model is used to finish the classification and discriminant analysis.The simulation results and industrial experiment in antimony flotation process show that the proposed method reduces fluctuation of the tailings indicators and the cost of reagent dosage.It can lay a foundation for optimizing the whole process of flotation.
基金Project(62073342)supported by the National Natural Science Foundation of ChinaProject(2014 AA 041803)supported by the Hi-tech Research and Development Program of China。
文摘The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.
文摘Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.