Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign...System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.展开更多
To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on ...To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数...针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数据清洗方法,首先对输入数据建立KD-Tree,再使用DBSCAN在最近邻样本上扫描完成聚类,聚类结束以后会分离出噪声点,将噪声点去除即可完成对水电机组状态监测数据清洗。选取某水电站状态监测系统上导摆度数据1 088条,再以相同时间间隔插入随机数据100条,通过算例与常规DBScan、K-means、OCSVM算法对比聚类性能与时间性能,所提出的方法识别正确率最高,为97.78%,消耗时间最少,为0.007 732 s,数据清洗效果最优,并可以大幅减少计算时间。展开更多
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
文摘System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.
基金supported by the Major Projects for Science and Technology Innovation 2030(2018AAA0100805).
文摘To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.