期刊文献+
共找到8,271篇文章
< 1 2 250 >
每页显示 20 50 100
Utilizing BP neural networks to accurately reconstruct the tritium depth profile in materials for BIXS
1
作者 Chen Zhao Wei Jin +2 位作者 Yan Shi Chang-An Chen Yi-Ying Zhao 《Nuclear Science and Techniques》 2025年第1期103-114,共12页
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem... β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection. 展开更多
关键词 β-ray-induced X-ray spectroscopy Tritium detection bp network Ridge regression Reconstruction problem
在线阅读 下载PDF
基于BP神经网络的咸水黏度预测及其对渗流的影响
2
作者 李涛 美合日阿依·穆太力普 +2 位作者 薛福生 李延静 敬嘉珩 《油气地质与采收率》 北大核心 2025年第1期152-161,共10页
在碳中和背景下,采用CO_(2)咸水层封存技术来实现碳减排目标时,咸水黏度对储层中的CO_(2)-咸水两相渗流过程有着直接的影响。目前,基于压力影响的黏度预测方法仍有待完善。使用最小二乘法、BP神经网络和基于遗传算法的BP神经网络,将咸... 在碳中和背景下,采用CO_(2)咸水层封存技术来实现碳减排目标时,咸水黏度对储层中的CO_(2)-咸水两相渗流过程有着直接的影响。目前,基于压力影响的黏度预测方法仍有待完善。使用最小二乘法、BP神经网络和基于遗传算法的BP神经网络,将咸水黏度分别当作温度、质量摩尔浓度的二元函数以及温度、质量摩尔浓度、压力的三元函数优化了现有的计算方法,建立了考虑压力影响的黏度预测优化模型。在获得最佳的预测方式后,基于COMSOL软件的水平集方法系统分析了黏度对渗流的影响。研究结果表明,采用最小二乘法可以对现有的经验公式进行一定优化,但是效果不明显;采用二元BP神经网络可以将预测精度提高45.20%,考虑压力后采用三元BP神经网络可以将预测精度提高57.32%。因此,在实验数据充足的情况下,基于BP神经网络模型可以得到较大压力范围内可靠的咸水黏度值;由于经验公式法能够预测黏度变化趋势,在缺乏相应实验数据的情况下,可通过经验公式法获得咸水黏度值。此外,通过仿真结果可以发现,黏度会影响流体在流道的分布,进而影响流动速度,黏度比越大,出口平均速度波动越小且更快地趋于平稳;而且黏度比越大,残余水饱和度越小,越有利于驱替过程的进行,二者呈对数函数的关系。 展开更多
关键词 咸水黏度 bp神经网络 压力 渗流模拟 CO_(2)咸水层封存
在线阅读 下载PDF
PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用
3
作者 杨健 《农机化研究》 北大核心 2025年第3期254-258,共5页
拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(... 拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(PCA)算法对拖拉机发动机的传感器数据进行降维处理,并使用BP神经网络对降维后的数据进行分类识别,以实现拖拉机发动机故障的诊断。试验结果表明:PCA-BP神经网络模型可以准确地诊断拖拉机发动机的多种故障,相比于传统的BP神经网络模型,具有更高的准确率和更好的泛化能力,表明PCA-BP神经网络模型在拖拉机发动机故障诊断中具有较大的应用前景。 展开更多
关键词 拖拉机发动机 故障诊断 主成分分析 bp神经网络
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测
4
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断
5
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于BP神经网络的飞行员对跑道平整度的评价预测
6
作者 齐麟 李苓通 《中国民航大学学报》 2025年第2期38-44,51,共8页
基于美国联邦航空管理局(FAA,Federal Aviation Administration)在B737-800和A330-200飞行模拟器中进行的飞行员对37条实测跑道平整度主观评价的调查数据,对中国跑道平整度评价指标与飞行员对跑道平整度评价间的关系进行分析,并对比分... 基于美国联邦航空管理局(FAA,Federal Aviation Administration)在B737-800和A330-200飞行模拟器中进行的飞行员对37条实测跑道平整度主观评价的调查数据,对中国跑道平整度评价指标与飞行员对跑道平整度评价间的关系进行分析,并对比分析不同机型对飞行员评价跑道平整度的影响。构建反向传播(BP,back propagation)神经网络,以中国现行的跑道平整度评价指标和飞机总重(AGW,aircraft gross weight)作为输入,以飞行员对跑道平整度能否接受作为输出,预测飞行员对跑道平整度的评价。结果表明,各跑道平整度评价指标与飞行员对跑道平整度的评价间拟合优度偏低,无法单独对飞行员的评价结果进行预测;机型会影响飞行员对跑道平整度的评价,在飞行员对跑道平整度进行评价预测时需要考虑机型特征;BP神经网络在训练集的预测准确率为100%,在测试集的预测准确率为95.5%,能够有效地综合中国跑道平整度评价指标的特征,并实现跨机型准确预测飞行员对跑道平整度评价的结果。 展开更多
关键词 机场跑道平整度 评价指标 飞行员评价 bp神经网络
在线阅读 下载PDF
基于RF-GA-BPNN算法的供应链风险预警研究
7
作者 王红春 周子祥 《工业工程》 2025年第2期120-128,共9页
供应链系统时刻面临着来自内外部环境的多重风险与挑战,目前供应链风险预警算法在指标选取、阈值优化等方面尚存不足。为进一步提升供应链风险预警能力,关注算法融合优化及其预警效果,构建基于RF-GABPNN算法的供应链风险预警模型。该模... 供应链系统时刻面临着来自内外部环境的多重风险与挑战,目前供应链风险预警算法在指标选取、阈值优化等方面尚存不足。为进一步提升供应链风险预警能力,关注算法融合优化及其预警效果,构建基于RF-GABPNN算法的供应链风险预警模型。该模型有机结合随机森林、遗传算法、BP神经网络等多类算法的特性与优势,通过指标特征重要性筛选、初始参数优化等手段改进BP神经网络预测效果。利用中国A股3309家上市企业的风险预警指标数据集对模型进行训练与测试,结果表明RF-GA-BPNN算法在300组随机样本数据的训练下,预警准确率可达96.50%。基于RF-GA-BPNN算法的供应链风险预警模型具有较优秀的学习能力和预警能力,预测结果可为供应链风险水平的初期判断以及风险抵御措施的制定实施提供数值参考。 展开更多
关键词 供应链 风险预警 随机森林 遗传算法 bp神经网络
在线阅读 下载PDF
BP神经网络在离心压缩机叶轮优化中的应用
8
作者 董志强 于根亮 +1 位作者 董逸飞 陈义恒 《汽车实用技术》 2025年第2期56-62,共7页
为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的... 为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的映射关系,结合IPSO优化其参数,同时利用遗传算法(GA)确定叶轮的最佳性能参数。研究表明,改进的IPSO算法通过增强粒子群的动态适应性和全局搜索能力,提高了BP神经网络的预测精度和优化效率。优化后的叶轮等熵效率提高1.34%,多变效率提高1.04%,流量增加10.4%。该方法显著提升了离心式压缩机叶轮的设计效率和性能,为复杂流体机械的优化设计提供了新思路。 展开更多
关键词 离心式压缩机 CFD仿真 叶轮参数优化 bp神经网络 遗传算法
在线阅读 下载PDF
基于BP神经网络的机制砂混凝土抗压强度预测
9
作者 张军 崔政新 +1 位作者 裘松立 宋冰泉 《建筑技术》 2025年第1期88-92,共5页
机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的... 机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的预测和泛化能力,模型的预测值与实测值高度吻合;基于BP神经网络模型分析了石粉含量对机制砂混凝土不同强度等级的影响,发现石粉含量约10%时达到最大值,预测值与实际值的误差在8%以内。深度学习方法可有效提高机制砂混凝土配合比设计的试验效率,降低材料和时间成本。 展开更多
关键词 机制砂混凝土 抗压强度 bp神经网络 石粉含量 配合比设计
在线阅读 下载PDF
基于高斯过程回归和BP神经网络的油储地罐容积表标定研究
10
作者 王彩玲 程叶 +1 位作者 许欣黎 倪庆旭 《石油石化节能与计量》 2025年第2期26-30,35,共6页
石油作为中国重要的能源资源之一,广泛应用于发电、运输、工业生产等各个领域。准确的油储地罐容积表标定对于确保各类石油产品储存、运输和交易的精确计量至关重要。传统的标定方法通常高度依赖于静态测量和经验公式,易受时间、环境条... 石油作为中国重要的能源资源之一,广泛应用于发电、运输、工业生产等各个领域。准确的油储地罐容积表标定对于确保各类石油产品储存、运输和交易的精确计量至关重要。传统的标定方法通常高度依赖于静态测量和经验公式,易受时间、环境条件及人为因素的影响。为了解决这一问题,提出了一种基于高斯过程回归(GPR)和反向传播神经网络(BPNN)的标定验证方法。在真实加油站数据构建的数据集上进行实验,结果显示,高斯过程回归模型和BP神经网络模型的平均均方根误差RMSE分别为3.435、8.409,模型的预测效果相对较好,研究结果可为容积表的标定工作提供有价值的参考。 展开更多
关键词 容积表标定 bp神经网络 高斯过程回归 数据挖掘 误差预测
在线阅读 下载PDF
GA-BP模型在HSS模型参数取值中的应用
11
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 bp神经网络 小应变参数 参数反演
在线阅读 下载PDF
基于BP神经网络和NSGA-Ⅱ算法的直流电磁泵结构优化
12
作者 杨照林 陈观慈 +2 位作者 张文斌 杨进 陈永华 《兵器装备工程学报》 北大核心 2025年第1期182-190,共9页
为了提高直流电磁泵的压力来驱动液态金属流动进行散热,改善泵的输送效率,采用数值模拟与智能算法相结合的优化设计方法,对泵的结构参数和输入电流进行了优化。以液态金属镓铟锡合金为工质,在1.5 L/min流量工况下,利用COMSOL软件对电磁... 为了提高直流电磁泵的压力来驱动液态金属流动进行散热,改善泵的输送效率,采用数值模拟与智能算法相结合的优化设计方法,对泵的结构参数和输入电流进行了优化。以液态金属镓铟锡合金为工质,在1.5 L/min流量工况下,利用COMSOL软件对电磁泵进行了数值模拟仿真,求得了泵的静压差并将其与试验值进行了对比,验证了仿真模型的准确性。采用Box-Behnken试验设计方法进行数据采集,根据试验数据构建BP神经网络代理模型,以压力和效率最大化为优化目标,结合NSGA-Ⅱ算法进行结构优化。结果表明:在相同流量下,优化后泵的输入电流减小了20 A,更利于散热;压力和效率分别提高了2577.6 Pa和11.8%,沿程损耗降低,整体性能得到改善;对比流场分析,泵内部流动速度更均匀,流线分布更加平稳。 展开更多
关键词 直流电磁泵 压力 效率 bp神经网络 NSGA-Ⅱ
在线阅读 下载PDF
基于萤火虫算法优化BP神经网络的核电厂故障参数预测
13
作者 刘涛 谢金森 +4 位作者 邓年彪 陈鹏宇 吴智强 张二品 于涛 《核科学与工程》 北大核心 2025年第1期120-130,共11页
随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化... 随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化的BP神经网络(FA-BP神经网络)。使用PCTRAN仿真软件生成的数据,比较了FA-BP神经网络与传统BP网络在预测性能上的差异,并应用FA-BP神经网络进行故障诊断。研究结果表明,FA-BP神经网络在训练效率和预测精度方面均显著优于传统BP网络,并在故障诊断中展现出高准确率。实验表明FA-BP模型能够支持核电厂操作人员在事故中更有效地管理机组状态,增强核电安全性。 展开更多
关键词 核电厂 瞬态参数预测 萤火虫算法 bp神经网络
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:2
14
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
基于图像处理和BP神经网络的森林防火无人机系统
15
作者 杨静 《农机化研究》 北大核心 2025年第2期205-209,共5页
对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时... 对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时仅22 s,比普通神经网络159 s缩短很多。这表明,BP神经网络是更可靠且更有效率的火灾识别方案。 展开更多
关键词 森林防火 无人机 图像处理 bp神经网络
在线阅读 下载PDF
基于BP网络和DQN的预测-校正再入制导方法
16
作者 王宽 闫循良 +2 位作者 洪蓓 南汶江 王培臣 《西北工业大学学报》 北大核心 2025年第2期201-211,共11页
针对传统数值预测-校正制导算法计算效率低、难以在线应用等问题,提出了一种基于BP网络和深度Q学习网络(DQN)的预测-校正制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,构建并训练了剩余航程预测BP网络,利用预测航程偏... 针对传统数值预测-校正制导算法计算效率低、难以在线应用等问题,提出了一种基于BP网络和深度Q学习网络(DQN)的预测-校正制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,构建并训练了剩余航程预测BP网络,利用预测航程偏差校正倾侧角幅值剖面参数;在侧向制导方面,针对再入制导问题构建强化学习所需的状态、动作空间;确定决策点并设计考虑综合性能的奖励函数;构建强化学习训练网络,进而通过学习网络实现倾侧反转决策。以CAV-H再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提基于BP网络的纵向制导方法具有相当的终端精度和较高的计算效率;与传统基于航向角走廊的侧向制导方法相比,所提基于DQN的侧向制导方法具有相当的计算精度以及更少的反转次数。 展开更多
关键词 再入滑翔制导 预测-校正 bp网络 强化学习 深度Q学习网络
在线阅读 下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
17
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
在线阅读 下载PDF
基于BP神经网络的整株秸秆还田装置多目标参数优化——以1ZT-210还田机为例
18
作者 董志贵 张庆柱 +1 位作者 刘理 杨天一 《农机化研究》 北大核心 2025年第7期52-58,共7页
为解决整株秸秆还田装置多目标参数优化时拟合误差精度差和多目标优化准确性低等缺陷,提出了一种高精度和高稳定性的基于BP神经网络的多目标优化方法。以1ZT-210型水稻整株秸秆还田装置为研究对象,选取机具前进速度、刀辊转速为试验因素... 为解决整株秸秆还田装置多目标参数优化时拟合误差精度差和多目标优化准确性低等缺陷,提出了一种高精度和高稳定性的基于BP神经网络的多目标优化方法。以1ZT-210型水稻整株秸秆还田装置为研究对象,选取机具前进速度、刀辊转速为试验因素,以及还田机作业功耗和秸秆还田率为影响指标,以二次正交旋转组合试验数据为训练样本,获得作业功耗和秸秆还田率与影响因素的BP神经网络模型。最佳参数组合:机具前进速度1.20 km/h、刀辊转速225 r/min时,还田装置的作业功耗最小值为12.43 kW,秸秆还田率最大值为93.25%;试验条件下还田机最小作业功耗优于回归分析法所得最小功耗14.32 kW,秸秆还田率优于回归分析法所得最大还田率93.14%。以BP神经网络优化结果进行验证试验,测得作业功耗为12.68 kW,与BP神经网络优化结果绝对误差为0.25 kW,相对误差为2.01%;秸秆还田率为93.13%,与BP神经网络优化结果绝对误差为-0.12%,相对误差为0.13%。试验结果表明:该优化方法实用性强,拟合精度高,优化结果准确稳定,为解决农业工程领域中类似优化问题提供了一种新方法。 展开更多
关键词 整株秸秆 还田装置 bp神经网络 参数优化
在线阅读 下载PDF
基于BP神经网络的敦煌图案在旗袍中的感性应用
19
作者 方思涵 薛媛 《毛纺科技》 北大核心 2025年第3期86-93,共8页
为提高敦煌图案在旗袍中的设计效率,满足消费者对旗袍图案的感性需求,提出基于BP神经网络的敦煌图案在旗袍中的感性设计方法。筛选7类符合旗袍风格的敦煌图案,绘制16款旗袍刺激图,利用语义差异法设计调查问卷,获取消费者在12个维度对刺... 为提高敦煌图案在旗袍中的设计效率,满足消费者对旗袍图案的感性需求,提出基于BP神经网络的敦煌图案在旗袍中的感性设计方法。筛选7类符合旗袍风格的敦煌图案,绘制16款旗袍刺激图,利用语义差异法设计调查问卷,获取消费者在12个维度对刺激图的感性评价值,利用因子分析法对评价值进行数据分析,选出3个感性因子,从3个维度分析敦煌图案的设计要素并对其进行模块编码,构建消费者对旗袍的感性评价与敦煌图案的设计要素之间的关联模型,训练并验证该模型的准确性。结果表明:敦煌图案的类别、单元图案尺寸、排列方式的不同组合会使消费者展现出不同的感性心理;该BP神经网络模型具有可行性,可指导敦煌图案在旗袍中的感性设计。 展开更多
关键词 感性工学 旗袍 敦煌图案 因子分析 bp神经网络
在线阅读 下载PDF
基于SSA-BP神经网络的无人机发射参数择优
20
作者 贾华宇 郑会龙 +1 位作者 周洪 张谦 《华南理工大学学报(自然科学版)》 北大核心 2025年第4期90-101,共12页
火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在... 火箭助推零长发射是无人机发射的重要形式,发射角度、助推器夹角、助推器推力等发射参数的选取直接关系到无人机发射任务的成败。无人机火箭助推零长发射在设计阶段借助工程经验选取发射角度、助推器夹角、助推器推力等关键参数时,存在发射参数迭代择优周期长、设计交互性差、容易造成无人机飞行姿态失稳的问题。该文以某无人机为研究对象,对其发射阶段进行动力学及运动学建模,构建了六自由度非线性模型,基于QT/C++软件编制无人机发射弹道参数化仿真软件,并结合某无人机真实发射试验数据,验证该发射弹道仿真软件的有效性。同时,为解决发射参数自主择优问题,在反向传播(BP)神经网络参数预测模型的基础上引入麻雀搜索算法(SSA)、粒子群优化算法(PSO)、遗传算法(GA)优化模块,提出基于SSA优化BP神经网络的无人机发射参数寻优方法,消除BP神经网络在参数预测过程中存在的过拟合及局部最优效应,对参数预测结果求绝对误差(MAE)、平均百分百误差(MAPE)、均方根误差(RMSE),综合评估SSA-BP对发射参数预测的优越性,并通过发射弹道校核验证发射参数选取的合理性。结果表明,SSA-BP模型对发射参数的预测精度最高、鲁棒性最好,可为无人机发射分系统工程设计阶段的发射参数自主择优选取提供设计依据。 展开更多
关键词 无人机发射 麻雀搜索算法 bp神经网络 参数寻优 建模仿真
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部