期刊文献+
共找到1,481篇文章
< 1 2 75 >
每页显示 20 50 100
不平衡集成算法LASSO-EasyEnsemble在冠心病预后预测中的应用及可解释性研究
1
作者 昝家昕 杨弘 +4 位作者 田晶 闫晶晶 和紫铉 杜宇涛 张岩波 《中国卫生统计》 北大核心 2025年第2期197-203,共7页
目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有... 目的 针对冠心病预后预测中遇到的高噪声、类间不平衡的特点,通过LASSO特征筛选后,构建EasyEnsemble不平衡集成模型并对模型性能进行评估。方法 基于2009—2018年美国健康与营养调查公共数据库的调查数据,随访时间截止到2019年。预后有无因病死亡作为结局,通过LASSO进行特征选择,使用筛选后特征构建EasyEnsemble不平衡集成预测模型和SMOTE+LightGBM、XGBoost、Random Forest预测模型,采用网格搜索法对每个模型进行参数优化,通过AUC、精确率、特异度、G-mean和性能曲线评价其分类性能;应用SHAP(shapley additive explanation)进行模型可解释性分析。结果 EasyEnsemble模型的综合性能最高,AUC为0.80(95%CI:0.79~0.82),精确率为0.86(95%CI:0.78~0.93),特异度为0.99(95%CI:0.98~0.99)和G-mean为0.79(95%CI:0.76~0.83),性能曲线也显示最高。同时,年龄、血清磷、糖尿病、白蛋白等是影响患者预后的重要因素。结论 基于LASSO-EasyEnsemble的不平衡集成模型能够实现对冠心病患者预后的精准预测,结合SHAP可以帮助临床医生更好地评估疾病严重程度和识别高危人群以便实现患者个性化管理。 展开更多
关键词 冠心病 不平衡数据 集成学习 预后预测 可解释性
在线阅读 下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:7
2
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
在线阅读 下载PDF
Air combat target maneuver trajectory prediction based on robust regularized Volterra series and adaptive ensemble online transfer learning 被引量:2
3
作者 Xi Zhi-fei Kou Ying-xin +4 位作者 Li Zhan-wu Lv Yue Xu An Li You Li Shuang-qing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期187-206,共20页
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta... Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets. 展开更多
关键词 Maneuver trajectory prediction Volterra series Transfer learning Online learning ensemble learning Robust regularization
在线阅读 下载PDF
Novel ensemble learning based on multiple section distribution in distributed environment
4
作者 Fang Min 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期377-380,共4页
Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense... Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method. 展开更多
关键词 distributed environment ensemble learning multiple classifiers combination.
在线阅读 下载PDF
一种采用渐进学习模式的SBS-CLearning分类算法 被引量:3
5
作者 申彦 朱玉全 宋新平 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第6期696-703,共8页
针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式... 针对Learn++. NSE算法中多个基分类器之间相互独立、未利用前阶段学习结果辅助后续阶段学习而准确率较低的问题,借鉴人类的学习过程,优化Learn++. NSE算法内部的学习机制,转变基分类器的独立学习为渐进学习,提出了一种采用渐进学习模式的SBS-CLearning分类算法.分析了Learn++. NSE算法的不足.给出了SBS-CLearning算法的步骤,该算法在前阶段基分类器的基础之上先增量学习,再完成最终的加权集成.在测试数据集上对比分析了Learn++. NSE与SBSCLearning的分类准确率.试验结果表明:SBS-CLearning算法吸收了增量学习与集成学习的优势,相比Learn++. NSE提高了分类准确率.针对SEA人工数据集,SBS-CLearning,Learn++. NSE的平均分类准确率分别为0. 982,0. 976.针对旋转棋盘真实数据集,在Constant,Sinusoidal,Pulse环境下,SBS-CLearning的平均分类准确率分别为0. 624,0. 655,0. 662,而Learn++. NSE分别为0. 593,0. 633,0. 629. 展开更多
关键词 大数据挖掘 分类算法 集成学习 增量学习 概念漂移
在线阅读 下载PDF
改进麻雀算法和Q-Learning优化集成学习轨道电路故障诊断 被引量:8
6
作者 徐凯 郑浩 +1 位作者 涂永超 吴仕勋 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第11期4426-4437,共12页
无绝缘轨道电路的故障具有复杂性与随机性,采用单一的模型进行故障诊断,其性能评价指标难以提高。而采用集成学习方式,则存在各基学习器结构、参数设计盲目,集成模型中各基学习器组合权重难以分配的问题。针对以上问题,提出一种改进麻... 无绝缘轨道电路的故障具有复杂性与随机性,采用单一的模型进行故障诊断,其性能评价指标难以提高。而采用集成学习方式,则存在各基学习器结构、参数设计盲目,集成模型中各基学习器组合权重难以分配的问题。针对以上问题,提出一种改进麻雀算法和Q-Learning优化集成学习的轨道电路故障诊断新方法,该方法有机地将集成学习与计算智能和强化学习相结合,充分挖掘轨道电路故障特征,提高性能评价指标。首先,使用卷积神经网络、长短期记忆网络和多层感知器深度学习模型,以及支持向量机和随机森林传统机器学习模型,共同构成集成学习基学习器,解决单一学习模型的不足,不同基学习器的使用保证集成学习的多样性。从自动化机器学习角度出发,采用改进麻雀算法优化该集成学习模型的结构和参数,克服其结构和参数难以确定的问题。在此之上,引入强化学习Q-learning对集成模型中各基学习器组合权重进行优化,智能地确定集成学习各基学习器的组合权重。最后,将集成学习模型的预测结果与真实结果比较后得到误差,再采用BP神经网络对预测结果进行补偿修正,进一步提高轨道电路的故障诊断性能评价指标。仿真结果表明,利用所提方法进一步改善了轨道电路故障诊断的准确度、精确度、召回率和F1值等性能评价指标。 展开更多
关键词 无绝缘轨道电路 故障诊断 集成学习 改进麻雀算法 Q-learning 误差修正
在线阅读 下载PDF
基于Ensemble的增量分类方法 被引量:1
7
作者 刘波 潘久辉 《计算机工程》 CAS CSCD 北大核心 2008年第19期187-188,191,共3页
针对在维护数据挖掘模型过程中须反复计算数据集、效率较低的问题,基于Ensembles学习思想,研究增量数据集的弱分类器生成方法,根据增量数据集分类器之间的相异度提出新的组合分类算法,分析组合分类器的出错率。实验结果表明,该分类方法... 针对在维护数据挖掘模型过程中须反复计算数据集、效率较低的问题,基于Ensembles学习思想,研究增量数据集的弱分类器生成方法,根据增量数据集分类器之间的相异度提出新的组合分类算法,分析组合分类器的出错率。实验结果表明,该分类方法是有效的。 展开更多
关键词 增量 分类 ensemble学习 组合
在线阅读 下载PDF
Ensemble-SISPLS近红外光谱变量选择方法 被引量:1
8
作者 李四海 赵磊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第4期1047-1052,共6页
近红外光谱具有高维小样本的特点,变量选择是提高定量分析模型稳健性和可解释性的一种有效方法。确定独立筛选(SIS)是一种基于边际相关性的超高维数据变量选择方法,广泛用于基因微阵列数据的变量选择。SIS具有将数据维度降低至样本大小... 近红外光谱具有高维小样本的特点,变量选择是提高定量分析模型稳健性和可解释性的一种有效方法。确定独立筛选(SIS)是一种基于边际相关性的超高维数据变量选择方法,广泛用于基因微阵列数据的变量选择。SIS具有将数据维度降低至样本大小规模的能力,其降维能力与LASSO相当,在相当宽泛的近似条件下,由于具有安全筛选性质,所有重要变量被保留的概率趋于1。基于确定独立筛选偏最小二乘(SIS-SPLS)的变量选择是一种迭代式的SIS变量选择方法,首先利用SIS方法完成光谱重要变量的初选;然后根据重要变量的边际相关性大小进行逐步前向选择:建立偏最小二乘回归模型,依据贝叶斯信息准则(BIC)确定最终的变量选择结果。SIS-SPLS以逐步前向选择的方式实现对重要变量的增量式筛选,随着潜变量个数的增加及因变量残差的逐步减小, SIS-SPLS方法选择的变量个数将趋于稳定。然而仅以边际相关性对变量重要性进行评价,当光谱变量个数远大于样本数时,该方法也存在选择的变量过多、变量选择结果不够稳健等问题。为进一步提高小样本情况下变量选择的稳健性,将集成学习引入SIS-SPLS方法之中,提出了一种集成SIS-SPLS变量选择方法(Ensemble-SISPLS)。该方法首先对校正集样本进行自助重采样,对采样得到的每一个校正子集分别使用SIS-SPLS方法进行变量筛选,通过投票机制并设置频次阈值对所有校正子集的变量选择结果进行集成,选择出现频次大于给定阈值的变量并建立偏最小二乘回归模型,计算5折交叉验证均方根误差。对频次阈值和潜变量个数两个关键参数使用网格搜索法进行优选,根据子模型的交叉验证均方根误差和变量个数对子模型性能进行综合评价,以最优子模型包含的变量作为最终的变量选择结果。分别在Corn数据集和当归数据集上进行变量选择实验,比较Ensemble-SISPLS, SIS-SPLS和UVE-PLS三种变量选择方法的性能。其中当归数据集共77个样本,样本采自甘肃岷县和渭源县,使用Nicolet-6700型近红外光谱仪扫描得到所有样本的近红外光谱并对当归中的阿魏酸含量进行预测。Ensemble-SISPLS方法在Corn数据集上选择的变量个数、 RMSEP和决定系数分别为22, 0.000 8和0.999 8; SIS-SPLS方法在Corn数据集上选择的变量个数、 RMSEP和决定系数分别为97, 0.007 3和0.998 8。Ensemble-SISPLS方法在当归数据集上选择的变量个数、 RMSEP和决定系数分别为24, 0.018 1和0.996 3; SIS-SPLS方法在当归数据集上选择的变量个数、 RMSEP和决定系数分别为38, 0.022 6和0.994 3。结果表明,该方法进一步提高了变量选择结果的稳健性和预测能力。Ensemble-SISPLS变量选择方法有效结合了SIS-SPLS较强的变量选择能力和集成学习良好的泛化能力,提高了变量选择的稳健性。此外,由于在子模型的预测能力和变量个数之间进行了折中,一定程度上减少了选择变量的个数,提高了模型的可解释性。 展开更多
关键词 近红外光谱 变量选择 确定独立筛选 偏最小二乘 集成学习
在线阅读 下载PDF
Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques 被引量:30
9
作者 WANG Shi-ming ZHOU Jian +3 位作者 LI Chuan-qi Danial Jahed ARMAGHANI LI Xi-bing Hani SMITRI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期527-542,共16页
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ... Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods. 展开更多
关键词 ROCKBURST hard rock PREDICTION BAGGING BOOSTING ensemble learning
在线阅读 下载PDF
基于改进Self-paced Ensemble算法的浏览器指纹识别
10
作者 张德升 陈博 +3 位作者 张建辉 卜佑军 孙重鑫 孙嘉 《计算机科学》 CSCD 北大核心 2023年第7期317-324,共8页
浏览器指纹技术凭借其无状态、跨域一致等优点,已经被许多网站应用到用户追踪、广告投放和安全验证等方面。浏览器指纹识别的过程是典型的不平衡数据的分类过程。针对当前浏览器指纹长期追踪过程中存在数据样本类不平衡导致指纹识别准... 浏览器指纹技术凭借其无状态、跨域一致等优点,已经被许多网站应用到用户追踪、广告投放和安全验证等方面。浏览器指纹识别的过程是典型的不平衡数据的分类过程。针对当前浏览器指纹长期追踪过程中存在数据样本类不平衡导致指纹识别准确度低、长期追踪易失效等问题,提出了改进的Self-paced Ensemble(Improved SPE,ISPE)方法应用于浏览器指纹识别。对浏览器指纹样本欠采样过程和集成学习单个分类器的训练过程进行了改进,重点针对难以识别的浏览器指纹,添加类注意力机制并优化自协调因子,使分类器在训练和识别浏览器指纹的过程中更加注重边界样本的分类效果,从而提升总体的浏览器指纹识别准确度。在所收集的3 483条指纹和开源数据集中的15 000条指纹上进行了实验,结果表明,ISPE算法在浏览器指纹匹配识别的F1-score达到95.6%,相比Bi-RNN算法提高了16.8%。 展开更多
关键词 浏览器指纹 用户追踪 Self-paced ensemble 欠采样 集成学习
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
11
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
在线阅读 下载PDF
基于集成学习的综掘面粉尘浓度预测模型 被引量:1
12
作者 王和堂 谭江龙 +3 位作者 杨天龙 刘焱 王辉 杨景皓 《金属矿山》 北大核心 2025年第5期185-194,共10页
针对现有的粉尘监测预警技术存在数据延迟高、信息融合差和预测精度低等缺陷,利用杭来湾煤矿30202综掘面粉尘监测数据集,集成机器学习和深度学习混合算法框架,构建了多变量特征耦合的粉尘浓度预测模型。基于偏差—方差均衡准则对预测模... 针对现有的粉尘监测预警技术存在数据延迟高、信息融合差和预测精度低等缺陷,利用杭来湾煤矿30202综掘面粉尘监测数据集,集成机器学习和深度学习混合算法框架,构建了多变量特征耦合的粉尘浓度预测模型。基于偏差—方差均衡准则对预测模型进行了超参数优化,并采用均方误差(MSE)与平均绝对百分比误差(MAPE)双指标评估模型预测效果。结果表明:①机器学习算法的MSE普遍低于深度学习算法,其局部准确性优于深度学习算法,MAPE和整体稳定性则相反,XGBoost和Bi-RNN分别是机器学习和深度学习算法中预测结果局部准确性和整体稳定性最优的。②机器学习、深度学习及混合集成模型较基学习器平均MSE降低了23.86、11.82、24.84;机器学习模型的MAPE提高了0.42个百分点,其余2种模型的MAPE分别降低了0.83、1.08个百分点,混合集成模型兼具机器学习局部准确率高和深度学习整体稳定性强的特点,整体预测效果最好。研究结果可为矿山智能精准高效降尘技术的发展提供理论基础。 展开更多
关键词 粉尘浓度预测 机器学习 深度学习 集成学习
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
13
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 Stacking集成学习
在线阅读 下载PDF
基于深度学习和SVM-RFE的网络入侵检测模型
14
作者 叶青 张延年 吴昊 《电信科学》 北大核心 2025年第7期108-119,共12页
网络入侵检测系统是对抗各种网络威胁的有效手段。然而,网络入侵数据中存在大量冗余信息和分布不平衡问题,为此,提出基于深度学习和支持向量机的递归特征消除算法的网络入侵检测(DLRF)模型。DLRF模型利用基于支持向量机的递归特征消除... 网络入侵检测系统是对抗各种网络威胁的有效手段。然而,网络入侵数据中存在大量冗余信息和分布不平衡问题,为此,提出基于深度学习和支持向量机的递归特征消除算法的网络入侵检测(DLRF)模型。DLRF模型利用基于支持向量机的递归特征消除算法进行特征权重排序,选择重要特征。同时,结合过采样和欠采样技术解决数据样本分布不平衡的问题。利用3个深度学习算法构建集成框架的基学习器,并利用深度神经网络构建元学习器,进而提升DLRF模型检测网络攻击的性能。通过两个典型的网络入侵数据集UNSW-NB15和数据集CICIDS 2017验证DLRF模型的性能。性能分析表明,DLRF模型在这两个数据集上的准确率分别为0.9068、0.9968,F1值(F1-score)分别为0.9068、0.9960。 展开更多
关键词 入侵检测模型 深度学习 递归特征消除 集成学习
在线阅读 下载PDF
基于LLaMa3和Choquet积分的最优相似度选择集成学习方法
15
作者 付超 余良菊 常文军 《计算机科学》 北大核心 2025年第9期80-87,共8页
为了在多分类器集成过程中筛选和赋权存在相关关系的基分类器,提出了一种基于LLaMa3和Choquet积分的最优相似度选择集成方法(LCOS-SELM)。首先在开源大模型LLaMa3的基础上,通过少量标注样本数据进行提示词学习,以实现非结构化文本的关... 为了在多分类器集成过程中筛选和赋权存在相关关系的基分类器,提出了一种基于LLaMa3和Choquet积分的最优相似度选择集成方法(LCOS-SELM)。首先在开源大模型LLaMa3的基础上,通过少量标注样本数据进行提示词学习,以实现非结构化文本的关键特征提取。然后,通过Choquet积分融合存在相关关系的分类器预测结果,并评估其相关关系以优化分类器选择。最后,采用最优相似度策略学习分类器权重,在确保样本一致性的同时,提升集成方法的性能。将LCOS-SELM用于克罗恩病的辅助诊断,以合肥市某三甲医院的297份检查报告为基础进行实验,通过与内镜检查报告进行比对,验证了所提方法的有效性。在相同实验条件下将LCOS-SELM与单分类器和传统集成模型进行实验对比,结果显示:在相同实验条件下,与单分类器相比,LCOS-SELM在Acc,F1和AUC指标上均提升了约8%;与传统集成模型相比,LCOS-SELM在3个指标上均提升了约2%,进一步验证了其性能优势。 展开更多
关键词 选择集成学习 LLaMa3 CHOQUET积分 权重学习 相似案例学习
在线阅读 下载PDF
混合正向组合预测和逆向目标优化的沥青混合料配合比设计
16
作者 艾长发 张家康 +2 位作者 焦方辉 甘国安 张傲南 《东南大学学报(自然科学版)》 北大核心 2025年第2期496-503,共8页
为实现沥青混合料配合比的高效合理设计,构建了包含沥青混合料设计参数和设计指标的数据集,以优化初试级配拟定、设计级配和最佳沥青含量确定等流程。建立了4种集成学习正向预测模型,并提出了基于表征模型解释性的Shapley值的组合策略,... 为实现沥青混合料配合比的高效合理设计,构建了包含沥青混合料设计参数和设计指标的数据集,以优化初试级配拟定、设计级配和最佳沥青含量确定等流程。建立了4种集成学习正向预测模型,并提出了基于表征模型解释性的Shapley值的组合策略,得到正向预测组合模型。混合正向预测组合模型和灰狼优化算法,得到符合拟定设计指标目标值的配合比,并基于室内试验进行验证。结果表明,该组合策略显著提升了模型性能,决定系数至少提升5%,平均绝对百分数误差至少降低5%。组合模型表现出较好的预测精度和泛化能力,决定系数大于0.8,平均绝对百分数误差小于10%,模型训练集和测试集性能偏差小于10%。设计指标试验值与目标值的相对误差小于10%,说明所提方法具备较好的可靠性。 展开更多
关键词 道路工程 配合比设计 集成学习 灰狼优化 SHAPLEY值
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
17
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
面向概念漂移的磁盘故障动态集成预测方法
18
作者 丁建立 梁烨文 李静 《小型微型计算机系统》 北大核心 2025年第5期1105-1111,共7页
在大规模数据中心中,磁盘日志通常随着时间的推移不断从磁盘生成,磁盘日志数据的分布会随着时间的推移发生不可预测的变化,产生概念漂移.然而当前磁盘故障预测方法大多是离线训练的,预测性能会随着时间的流逝而逐渐降低,无法对数据分布... 在大规模数据中心中,磁盘日志通常随着时间的推移不断从磁盘生成,磁盘日志数据的分布会随着时间的推移发生不可预测的变化,产生概念漂移.然而当前磁盘故障预测方法大多是离线训练的,预测性能会随着时间的流逝而逐渐降低,无法对数据分布的变化做出反映.针对这一问题,提出了一种面向概念漂移的磁盘故障动态集成预测方法AIDF.该方法从数据分析到磁盘故障预测整个环节都是动态进行的,是一个完整的自动化磁盘故障预测方法.首先,提出了AIDF总体架构.其次,对磁盘故障动态集成预测模型进行构建.包括以下3个方面:对磁盘数据流进行实时数据分析;根据磁盘数据流中存在的概念漂移类型,改进了基学习器的概念漂移检测过程,并基于磁盘故障预测性能为基学习器分配动态权重,建立集成学习模型;为了解决磁盘数据流中特征选择更新问题,提出一种基于概念漂移的动态特征更新与模型再训练算法,当磁盘数据流出现概念漂移并且所选择的最优特征集发生变化时,使用近期窗口中的数据再训练基学习器.实验结果表明,AIDF能够很好地应对磁盘故障预测模型老化的问题,长期保持95%以上的故障检测率,并且适用于实际动态应用环境. 展开更多
关键词 磁盘故障 概念漂移 集成学习 动态预测 增量学习
在线阅读 下载PDF
基于机器学习的森林碳储量时空分布模拟
19
作者 崔立东 贺丹 +2 位作者 刘玉龙 丛喜东 刘丹 《森林工程》 北大核心 2025年第5期904-911,共8页
森林碳储量是全球碳循环研究的重要内容,应对气候变化具有重要意义。以黑龙江省张广才岭北坡部分区域为研究对象,结合地面观测数据与Landsat TM(thematic mapper)/OLI(operational land imager)传感器数据,采用多种机器学习模型,结合引... 森林碳储量是全球碳循环研究的重要内容,应对气候变化具有重要意义。以黑龙江省张广才岭北坡部分区域为研究对象,结合地面观测数据与Landsat TM(thematic mapper)/OLI(operational land imager)传感器数据,采用多种机器学习模型,结合引导聚集Bagging(bootstrap aggregating)集成学习算法,进行森林碳储量模拟。结果表明,1990—2022年研究区森林碳储量呈现显著增加趋势,年平均碳储量达到(80.77±0.27) Mg C/hm2,且空间分布表现出明显的异质性特征,高碳储量区域集中于平坦或半山坡地带。此外,生长季平均气温与森林碳储量呈极显著的正相关关系(P<0.01),表明气温是影响碳储量变化的主要气候因子。研究结果可为森林碳储量的精准模拟和碳汇管理提供新思路。 展开更多
关键词 遥感 深度学习 Bagging集成学习 气候因子
在线阅读 下载PDF
基于贝叶斯优化集成学习的矿井通风阻变型故障诊断
20
作者 李兵磊 孙妍 +3 位作者 张化进 宋方家 龙翼 蔡和 《金属矿山》 北大核心 2025年第5期195-203,共9页
通风阻变型故障会导致矿井风流供需失衡,影响矿山生产安全。针对目前机器学习易误判和陷入局部最优解的问题,提出了基于贝叶斯优化集成学习的矿井通风阻变型故障诊断方法,提升模型的准确性和稳健性。基于矿井通风网络故障诊断数据集,构... 通风阻变型故障会导致矿井风流供需失衡,影响矿山生产安全。针对目前机器学习易误判和陷入局部最优解的问题,提出了基于贝叶斯优化集成学习的矿井通风阻变型故障诊断方法,提升模型的准确性和稳健性。基于矿井通风网络故障诊断数据集,构建了6种代表性集成学习模型,并通过贝叶斯算法优化其超参数,最后系统分析了集成学习在矿井通风阻变型故障诊断中的可行性和适用性。仿真试验结果表明:贝叶斯优化集成学习方法可有效辨识和诊断矿井通风阻变型故障,其中极度随机树、XGBoost、LightGBM模型诊断准确率为100%,明显优于常见的机器学习模型。综合模型准确性和确定性程度看,推荐采用XGBoost与Light GBM算法进行矿井通风阻变型故障诊断,其诊断准确率高,不确定性程度低,可为矿井智能化通风提供理论依据与方法指导。 展开更多
关键词 矿井通风 故障诊断 机器学习 集成学习 贝叶斯优化
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部