This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method fo...This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.展开更多
In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MED...In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.展开更多
基金supported by the National Natural Science Foundation of China(12171106)the Natural Science Foundation of Guangxi Province(2020GXNSFDA238017 and 2018GXNSFFA281007)the Shanghai Sailing Program(21YF1430300)。
文摘This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.
基金the National Nature Science Foundation of China(No.61427803).
文摘In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.