Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential te...Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
基金supported by the National Natural Science Foundation of China (51175502)
文摘Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.