期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Solving mKdV-sinh-Gordon equation by a modified variable separated ordinary differential equation method 被引量:4
1
作者 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5123-5132,共10页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach. 展开更多
关键词 modified variable separated ODE method mKdV-sinh-Gordon equation explicit andexact solution
在线阅读 下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
2
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method (2 1)-dimensional sine-Poisson equation explicit and exact solution
在线阅读 下载PDF
On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids 被引量:5
3
作者 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2753-2758,共6页
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom... The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method. 展开更多
关键词 magnetoelectroelastic solid variable separation method COMPLETENESS general solution
在线阅读 下载PDF
Some discussions about method for solving the variable separating nonlinear models
4
作者 阮航宇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期17-24,共8页
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th... Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method. 展开更多
关键词 variable separating method nonzero seed solution nonlinear equation
在线阅读 下载PDF
Solutions of novel soliton molecules and their interactions of(2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 被引量:1
5
作者 Hong-Cai Ma Yi-Dan Gao Ai-Ping Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期77-83,共7页
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei... The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior. 展开更多
关键词 variable separation method Hirota bilinear method dromion solution (2+1)-dimensional potential Boiti–Leon–Manna–Pempinelli equation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部